中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Indecomposable representations of the square-root lie algebras of vector type and their boson realizations

文献类型:期刊论文

作者Ruan, D; Yuan, J; Jia, YF; Sun, HZ
刊名COMMUNICATIONS IN THEORETICAL PHYSICS
出版日期2001-05-15
卷号35页码:513-518
关键词nonlinear Lie algebra indecomposable representation boson realization angular momentum coherent state
ISSN号0253-6102
英文摘要The explicit expressions for indecomposable representations of nine square-root Lie algebras of vector type, R-nu lambda (nu, lambda = 0, +/-1), are obtained on the space of universal enveloping algebra of two-state Heisenberg-Weyl algebra, the invariant subspaces and the quotient spaces. From Fock representations corresponding to these indecomposable representations, the inhomogeneous boson realizations of R-nu lambda are given. The expectation values of R-nu lambda in the angular momentum coherent states are calculated as well as the corresponding classical limits.
WOS关键词SU(2)
WOS研究方向Physics
语种英语
WOS记录号WOS:000169609100001
出版者INT ACADEMIC PUBL
源URL[http://119.78.100.186/handle/113462/37621]  
专题中国科学院近代物理研究所
通讯作者Ruan, D
作者单位1.Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China
2.Tsing Hua Univ, Key Lab Quantum Informat & Measurements MOE, Beijing 100084, Peoples R China
3.Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China
推荐引用方式
GB/T 7714
Ruan, D,Yuan, J,Jia, YF,et al. Indecomposable representations of the square-root lie algebras of vector type and their boson realizations[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,2001,35:513-518.
APA Ruan, D,Yuan, J,Jia, YF,&Sun, HZ.(2001).Indecomposable representations of the square-root lie algebras of vector type and their boson realizations.COMMUNICATIONS IN THEORETICAL PHYSICS,35,513-518.
MLA Ruan, D,et al."Indecomposable representations of the square-root lie algebras of vector type and their boson realizations".COMMUNICATIONS IN THEORETICAL PHYSICS 35(2001):513-518.

入库方式: OAI收割

来源:近代物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。