Indecomposable representations of the square-root lie algebras of vector type and their boson realizations
文献类型:期刊论文
作者 | Ruan, D; Yuan, J; Jia, YF; Sun, HZ |
刊名 | COMMUNICATIONS IN THEORETICAL PHYSICS
![]() |
出版日期 | 2001-05-15 |
卷号 | 35页码:513-518 |
关键词 | nonlinear Lie algebra indecomposable representation boson realization angular momentum coherent state |
ISSN号 | 0253-6102 |
英文摘要 | The explicit expressions for indecomposable representations of nine square-root Lie algebras of vector type, R-nu lambda (nu, lambda = 0, +/-1), are obtained on the space of universal enveloping algebra of two-state Heisenberg-Weyl algebra, the invariant subspaces and the quotient spaces. From Fock representations corresponding to these indecomposable representations, the inhomogeneous boson realizations of R-nu lambda are given. The expectation values of R-nu lambda in the angular momentum coherent states are calculated as well as the corresponding classical limits. |
WOS关键词 | SU(2) |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000169609100001 |
出版者 | INT ACADEMIC PUBL |
源URL | [http://119.78.100.186/handle/113462/37621] ![]() |
专题 | 中国科学院近代物理研究所 |
通讯作者 | Ruan, D |
作者单位 | 1.Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China 2.Tsing Hua Univ, Key Lab Quantum Informat & Measurements MOE, Beijing 100084, Peoples R China 3.Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China |
推荐引用方式 GB/T 7714 | Ruan, D,Yuan, J,Jia, YF,et al. Indecomposable representations of the square-root lie algebras of vector type and their boson realizations[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,2001,35:513-518. |
APA | Ruan, D,Yuan, J,Jia, YF,&Sun, HZ.(2001).Indecomposable representations of the square-root lie algebras of vector type and their boson realizations.COMMUNICATIONS IN THEORETICAL PHYSICS,35,513-518. |
MLA | Ruan, D,et al."Indecomposable representations of the square-root lie algebras of vector type and their boson realizations".COMMUNICATIONS IN THEORETICAL PHYSICS 35(2001):513-518. |
入库方式: OAI收割
来源:近代物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。