Exact Polynomial Solutions of Schrodinger Equation with Various Hyperbolic Potentials
文献类型:期刊论文
作者 | Wen Fa-Kai1; Yang Zhan-Ying1; Liu Chong1; Yang Wen-Li2; Zhang Yao-Zhong3 |
刊名 | COMMUNICATIONS IN THEORETICAL PHYSICS
![]() |
出版日期 | 2014-02-01 |
卷号 | 61页码:153-159 |
关键词 | Schrodinger Equation Hyperbolic Potential The Functional beThe Ansatz Method Exact Polynomial Solutions |
ISSN号 | 0253-6102 |
文献子类 | Article |
英文摘要 | The Schrodinger equation with hyperbolic potential V(x) = -V(0)sinh(2q)(x/d)/cosh(6)(x/d) (q = 0, 1, 2, 3) is studied by transforming it into the confluent Heun equation. We obtain general symmetric and antisymmetric polynomial solutions of the Schrodinger equation in a unified form via the Functional Bethe ansatz method. Furthermore, we discuss the characteristic of wavefunction of bound state with varying potential strengths. Particularly, the number of wavefunction's nodes decreases with the increase of potential strengths, and the particle tends to the bottom of the potential well correspondingly. |
WOS关键词 | DIRAC-EQUATION ; BOUND-STATES ; SCARF-TYPE |
语种 | 英语 |
WOS记录号 | WOS:000331623400002 |
出版者 | IOP PUBLISHING LTD |
源URL | [http://119.78.100.186/handle/113462/49221] ![]() |
专题 | 中国科学院近代物理研究所 |
通讯作者 | Wen Fa-Kai |
作者单位 | 1.NW Univ Xian, Dept Phys, Xian 710069, Peoples R China 2.NW Univ Xian, Inst Modern Phys, Xian 710069, Peoples R China 3.Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia |
推荐引用方式 GB/T 7714 | Wen Fa-Kai,Yang Zhan-Ying,Liu Chong,et al. Exact Polynomial Solutions of Schrodinger Equation with Various Hyperbolic Potentials[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,2014,61:153-159. |
APA | Wen Fa-Kai,Yang Zhan-Ying,Liu Chong,Yang Wen-Li,&Zhang Yao-Zhong.(2014).Exact Polynomial Solutions of Schrodinger Equation with Various Hyperbolic Potentials.COMMUNICATIONS IN THEORETICAL PHYSICS,61,153-159. |
MLA | Wen Fa-Kai,et al."Exact Polynomial Solutions of Schrodinger Equation with Various Hyperbolic Potentials".COMMUNICATIONS IN THEORETICAL PHYSICS 61(2014):153-159. |
入库方式: OAI收割
来源:近代物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。