中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Exact Polynomial Solutions of Schrodinger Equation with Various Hyperbolic Potentials

文献类型:期刊论文

作者Wen Fa-Kai1; Yang Zhan-Ying1; Liu Chong1; Yang Wen-Li2; Zhang Yao-Zhong3
刊名COMMUNICATIONS IN THEORETICAL PHYSICS
出版日期2014-02-01
卷号61页码:153-159
关键词Schrodinger Equation Hyperbolic Potential The Functional beThe Ansatz Method Exact Polynomial Solutions
ISSN号0253-6102
文献子类Article
英文摘要The Schrodinger equation with hyperbolic potential V(x) = -V(0)sinh(2q)(x/d)/cosh(6)(x/d) (q = 0, 1, 2, 3) is studied by transforming it into the confluent Heun equation. We obtain general symmetric and antisymmetric polynomial solutions of the Schrodinger equation in a unified form via the Functional Bethe ansatz method. Furthermore, we discuss the characteristic of wavefunction of bound state with varying potential strengths. Particularly, the number of wavefunction's nodes decreases with the increase of potential strengths, and the particle tends to the bottom of the potential well correspondingly.
WOS关键词DIRAC-EQUATION ; BOUND-STATES ; SCARF-TYPE
语种英语
WOS记录号WOS:000331623400002
出版者IOP PUBLISHING LTD
源URL[http://119.78.100.186/handle/113462/49221]  
专题中国科学院近代物理研究所
通讯作者Wen Fa-Kai
作者单位1.NW Univ Xian, Dept Phys, Xian 710069, Peoples R China
2.NW Univ Xian, Inst Modern Phys, Xian 710069, Peoples R China
3.Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
推荐引用方式
GB/T 7714
Wen Fa-Kai,Yang Zhan-Ying,Liu Chong,et al. Exact Polynomial Solutions of Schrodinger Equation with Various Hyperbolic Potentials[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,2014,61:153-159.
APA Wen Fa-Kai,Yang Zhan-Ying,Liu Chong,Yang Wen-Li,&Zhang Yao-Zhong.(2014).Exact Polynomial Solutions of Schrodinger Equation with Various Hyperbolic Potentials.COMMUNICATIONS IN THEORETICAL PHYSICS,61,153-159.
MLA Wen Fa-Kai,et al."Exact Polynomial Solutions of Schrodinger Equation with Various Hyperbolic Potentials".COMMUNICATIONS IN THEORETICAL PHYSICS 61(2014):153-159.

入库方式: OAI收割

来源:近代物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。