Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice
文献类型:期刊论文
作者 | Jia Li-Ping1,2; Tekic, Jasmina3; Duan Wen-Shan1,2 |
刊名 | CHINESE PHYSICS LETTERS
![]() |
出版日期 | 2015-04 |
卷号 | 32 |
ISSN号 | 0256-307X |
DOI | 10.1088/0256-307X/32/4/040501 |
英文摘要 | The propagation of kink or edge dislocations in the underdamped generalized two-dimensional Frenkel-Kontorova model with harmonic interaction is studied with numerical simulations. The obtained results show that exactly one line of atoms can be inserted into the lattice, which remains at standstill. However, if more than one line of atoms are inserted into the lattice, then they will split into several lines with alpha = 1, where alpha presents the atoms inserted. In other words, only the kink with alpha = 1 is stable, while the other kinks are unstable, and will split into alpha = 1 kinks, which remain at standstill. |
WOS关键词 | FRENKEL-KONTOROVA-MODEL ; JOSEPHSON-JUNCTION ARRAYS ; DYNAMICS ; DISTRIBUTIONS ; VORTICES |
资助项目 | Serbian Ministry of Education and Science[III-45010] |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000352432800006 |
出版者 | IOP PUBLISHING LTD |
源URL | [http://119.78.100.186/handle/113462/56721] ![]() |
专题 | 中国科学院近代物理研究所 |
通讯作者 | Duan Wen-Shan |
作者单位 | 1.Northwest Normal Univ, Coll Phys & Elect Engn, Lanzhou 730070, Peoples R China 2.Northwest Normal Univ, Joint Lab Atom & Mol Phys NWNU & IMP CAS, Lanzhou 730070, Peoples R China 3.Univ Belgrade, Vinca Inst Nucl Sci, Lab Theoret & Condensed Matter Phys, Belgrade 11001, Serbia |
推荐引用方式 GB/T 7714 | Jia Li-Ping,Tekic, Jasmina,Duan Wen-Shan. Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice[J]. CHINESE PHYSICS LETTERS,2015,32. |
APA | Jia Li-Ping,Tekic, Jasmina,&Duan Wen-Shan.(2015).Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice.CHINESE PHYSICS LETTERS,32. |
MLA | Jia Li-Ping,et al."Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice".CHINESE PHYSICS LETTERS 32(2015). |
入库方式: OAI收割
来源:近代物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。