Sum rule in a consistent relativistic random-phase approximation
文献类型:期刊论文
作者 | Ma, ZY |
刊名 | COMMUNICATIONS IN THEORETICAL PHYSICS
![]() |
出版日期 | 1999-12-30 |
卷号 | 32页码:493-498 |
关键词 | relativistic random-phase approximation sum rule constrained relativistic mean-field theory Dirac states |
ISSN号 | 0253-6102 |
英文摘要 | A fully consistent relativistic random-phase approximation (RRPA) is studied in the sense that the relativistic mean-field (RMF) wavefunction of nucleus and the particle-hole residual interactions in the RRPA are calculated from the same effective Lagrangian. A consistent treatment of RRPA within the RMF approximation, i.e., no sea approximation, has to include also the pairs formed from the Dirac states and occupied Fermi states, which is essential for satisfying the current conservation. The inverse energy-weighted sum rule for the isoscalar giant monopole mode is investigated in the constrained RMF. It is found that the sum rule is fulfilled only in the case where the Dirac state contributions are included. |
WOS关键词 | MEAN-FIELD THEORY ; FINITE NUCLEI ; GIANT-RESONANCES ; MATTER ; COMPRESSIBILITY ; DENSITY ; MODEL |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000084502200003 |
出版者 | HUAZHONG UNIV SCI TECH PRESS |
源URL | [http://119.78.100.186/handle/113462/57030] ![]() |
专题 | 中国科学院近代物理研究所 |
通讯作者 | Ma, ZY |
作者单位 | 1.Natl Lab Heavy Ion Accelerator, Ctr Nucl Theoret Phys, Lanzhou 730000, Peoples R China 2.Inst Atom Energy, Beijing 102413, Peoples R China 3.Acad Sinica, Inst Theoret Phys, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Ma, ZY. Sum rule in a consistent relativistic random-phase approximation[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,1999,32:493-498. |
APA | Ma, ZY.(1999).Sum rule in a consistent relativistic random-phase approximation.COMMUNICATIONS IN THEORETICAL PHYSICS,32,493-498. |
MLA | Ma, ZY."Sum rule in a consistent relativistic random-phase approximation".COMMUNICATIONS IN THEORETICAL PHYSICS 32(1999):493-498. |
入库方式: OAI收割
来源:近代物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。