Parallel Frequent Itemset Mining on Streaming Data
文献类型:会议论文
作者 | He, Yanshan1; Yue, Min2![]() |
出版日期 | 2014 |
关键词 | Frequent Pattern Frequent Itemset Mining Paralleled High Performance Streaming Data |
页码 | 725-730 |
英文摘要 | Owing to the widely used of data stream, frequent itemset mining on data stream have received more attention. Data stream is fast changing, massive, and potentially infinite. Therefore, we have to establish new data structure and algorithm to mine it. On the base of our previous work, we propose a new paralleled frequent itemset mining algorithm for data stream based on sliding window, which is called PFIMSD. The algorithm compresses whole data in current window into PSD-trees on paralleled processor only by one-scan. Increment method is used to append or delete related branch on PSD-tree when window is sliding. The experiment shows PFIMSD algorithm has good performance on efficiency and expansibility. |
会议录 | 2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC)
![]() |
会议录出版者 | IEEE |
会议录出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
语种 | 英语 |
资助项目 | Natural Science Foundation of Gansu Province[1308RJZA289] |
WOS研究方向 | Computer Science |
WOS记录号 | WOS:000393406200127 |
源URL | [http://119.78.100.186/handle/113462/58568] ![]() |
专题 | 中国科学院近代物理研究所 |
通讯作者 | He, Yanshan |
作者单位 | 1.Lanzhou Jiaotong Univ, Elect & Informat Sci Dept, Lanzhou, Gansu, Peoples R China 2.Chinese Acad Sci, Inst Modern Phys, Lanzhou, Gansu, Peoples R China |
推荐引用方式 GB/T 7714 | He, Yanshan,Yue, Min,IEEE. Parallel Frequent Itemset Mining on Streaming Data[C]. 见:. |
入库方式: OAI收割
来源:近代物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。