中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Parallel Frequent Itemset Mining on Streaming Data

文献类型:会议论文

作者He, Yanshan1; Yue, Min2; IEEE
出版日期2014
关键词Frequent Pattern Frequent Itemset Mining Paralleled High Performance Streaming Data
页码725-730
英文摘要Owing to the widely used of data stream, frequent itemset mining on data stream have received more attention. Data stream is fast changing, massive, and potentially infinite. Therefore, we have to establish new data structure and algorithm to mine it. On the base of our previous work, we propose a new paralleled frequent itemset mining algorithm for data stream based on sliding window, which is called PFIMSD. The algorithm compresses whole data in current window into PSD-trees on paralleled processor only by one-scan. Increment method is used to append or delete related branch on PSD-tree when window is sliding. The experiment shows PFIMSD algorithm has good performance on efficiency and expansibility.
会议录2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC)
会议录出版者IEEE
会议录出版地345 E 47TH ST, NEW YORK, NY 10017 USA
语种英语
资助项目Natural Science Foundation of Gansu Province[1308RJZA289]
WOS研究方向Computer Science
WOS记录号WOS:000393406200127
源URL[http://119.78.100.186/handle/113462/58568]  
专题中国科学院近代物理研究所
通讯作者He, Yanshan
作者单位1.Lanzhou Jiaotong Univ, Elect & Informat Sci Dept, Lanzhou, Gansu, Peoples R China
2.Chinese Acad Sci, Inst Modern Phys, Lanzhou, Gansu, Peoples R China
推荐引用方式
GB/T 7714
He, Yanshan,Yue, Min,IEEE. Parallel Frequent Itemset Mining on Streaming Data[C]. 见:.

入库方式: OAI收割

来源:近代物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。