Increasing Interpretation of Web Topic Detection via Prototype Learning From Sparse Poisson Deconvolution
文献类型:期刊论文
作者 | Yin, Baocai1; Pang, Junbiao5; Hu, Anjing5; Huang, Qingming3,4; Tian, Qi2 |
刊名 | IEEE TRANSACTIONS ON CYBERNETICS
![]() |
出版日期 | 2019-03-01 |
卷号 | 49期号:3页码:1072-1083 |
关键词 | Poisson deconvolution prototype learning (PL) sparsity submodularity topic interpretation Web topic detection |
ISSN号 | 2168-2267 |
DOI | 10.1109/TCYB.2018.2795015 |
英文摘要 | Organizing webpages into interesting topics is one of the key steps to understand the trends from multimodal Web data. The sparse, noisy, and less-constrained user-generated content results in inefficient feature representations. These descriptors unavoidably cause that a detected topic still contains a certain number of the false detected webpages, which further make a topic be less coherent, less interpretable, and less useful. In this paper, we address this problem from a viewpoint interpreting a topic by its prototypes, and present a two-step approach to achieve this goal. Following the detection-by-ranking approach, a sparse Poisson deconvolution is proposed to learn the intratopic similarities between webpages. To find the prototypes, leveraging the intratopic similarities, top-k diverse yet representative prototype webpages are identified from a submodularity function. Experimental results not only show the improved accuracies for the Web topic detection task, but also increase the interpretation of a topic by its prototypes on two public datasets. |
资助项目 | Natural Science Foundation of China[61672069] ; Natural Science Foundation of China[61472387] ; Natural Science Foundation of China[61332016] ; Natural Science Foundation of China[U1636214] ; Natural Science Foundation of China[61650202] ; Natural Science Foundation of China[61620106009] ; Natural Science Foundation of China[61429201] ; National Basic Research Program of China (973 Program)[2015CB351800] ; China Post-Doctoral Research Foundation ; Beijing Municipal Commission of Education[KM201610005034] ; Key Research Program of Frontier Sciences, Chinese Academy of Sciences[QYZDJ-SSW-SYS013] ; ARO[W911NF-15-1-0290] ; NEC Laboratory of America ; NEC Laboratoriy of Blippar |
WOS研究方向 | Automation & Control Systems ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000458655900029 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://119.78.100.204/handle/2XEOYT63/3414] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Pang, Junbiao; Huang, Qingming |
作者单位 | 1.Dalian Univ Technol, Adv Invocat Ctr Future Internet Technol, Dalian 116024, Peoples R China 2.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA 3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Chinese Acad Sci, Beijing 100049, Peoples R China 5.Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China |
推荐引用方式 GB/T 7714 | Yin, Baocai,Pang, Junbiao,Hu, Anjing,et al. Increasing Interpretation of Web Topic Detection via Prototype Learning From Sparse Poisson Deconvolution[J]. IEEE TRANSACTIONS ON CYBERNETICS,2019,49(3):1072-1083. |
APA | Yin, Baocai,Pang, Junbiao,Hu, Anjing,Huang, Qingming,&Tian, Qi.(2019).Increasing Interpretation of Web Topic Detection via Prototype Learning From Sparse Poisson Deconvolution.IEEE TRANSACTIONS ON CYBERNETICS,49(3),1072-1083. |
MLA | Yin, Baocai,et al."Increasing Interpretation of Web Topic Detection via Prototype Learning From Sparse Poisson Deconvolution".IEEE TRANSACTIONS ON CYBERNETICS 49.3(2019):1072-1083. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。