中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Increasing Interpretation of Web Topic Detection via Prototype Learning From Sparse Poisson Deconvolution

文献类型:期刊论文

作者Yin, Baocai1; Pang, Junbiao5; Hu, Anjing5; Huang, Qingming3,4; Tian, Qi2
刊名IEEE TRANSACTIONS ON CYBERNETICS
出版日期2019-03-01
卷号49期号:3页码:1072-1083
关键词Poisson deconvolution prototype learning (PL) sparsity submodularity topic interpretation Web topic detection
ISSN号2168-2267
DOI10.1109/TCYB.2018.2795015
英文摘要Organizing webpages into interesting topics is one of the key steps to understand the trends from multimodal Web data. The sparse, noisy, and less-constrained user-generated content results in inefficient feature representations. These descriptors unavoidably cause that a detected topic still contains a certain number of the false detected webpages, which further make a topic be less coherent, less interpretable, and less useful. In this paper, we address this problem from a viewpoint interpreting a topic by its prototypes, and present a two-step approach to achieve this goal. Following the detection-by-ranking approach, a sparse Poisson deconvolution is proposed to learn the intratopic similarities between webpages. To find the prototypes, leveraging the intratopic similarities, top-k diverse yet representative prototype webpages are identified from a submodularity function. Experimental results not only show the improved accuracies for the Web topic detection task, but also increase the interpretation of a topic by its prototypes on two public datasets.
资助项目Natural Science Foundation of China[61672069] ; Natural Science Foundation of China[61472387] ; Natural Science Foundation of China[61332016] ; Natural Science Foundation of China[U1636214] ; Natural Science Foundation of China[61650202] ; Natural Science Foundation of China[61620106009] ; Natural Science Foundation of China[61429201] ; National Basic Research Program of China (973 Program)[2015CB351800] ; China Post-Doctoral Research Foundation ; Beijing Municipal Commission of Education[KM201610005034] ; Key Research Program of Frontier Sciences, Chinese Academy of Sciences[QYZDJ-SSW-SYS013] ; ARO[W911NF-15-1-0290] ; NEC Laboratory of America ; NEC Laboratoriy of Blippar
WOS研究方向Automation & Control Systems ; Computer Science
语种英语
WOS记录号WOS:000458655900029
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/3414]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Pang, Junbiao; Huang, Qingming
作者单位1.Dalian Univ Technol, Adv Invocat Ctr Future Internet Technol, Dalian 116024, Peoples R China
2.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Chinese Acad Sci, Beijing 100049, Peoples R China
5.Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
推荐引用方式
GB/T 7714
Yin, Baocai,Pang, Junbiao,Hu, Anjing,et al. Increasing Interpretation of Web Topic Detection via Prototype Learning From Sparse Poisson Deconvolution[J]. IEEE TRANSACTIONS ON CYBERNETICS,2019,49(3):1072-1083.
APA Yin, Baocai,Pang, Junbiao,Hu, Anjing,Huang, Qingming,&Tian, Qi.(2019).Increasing Interpretation of Web Topic Detection via Prototype Learning From Sparse Poisson Deconvolution.IEEE TRANSACTIONS ON CYBERNETICS,49(3),1072-1083.
MLA Yin, Baocai,et al."Increasing Interpretation of Web Topic Detection via Prototype Learning From Sparse Poisson Deconvolution".IEEE TRANSACTIONS ON CYBERNETICS 49.3(2019):1072-1083.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。