Efficient parallel optimizations of a high-performance SIFT on GPUs
文献类型:期刊论文
作者 | Liu, Shice2,3; Li, Zhihao2,3; Jia, Haipeng3; Zhang, Yunquan3; Li, Shigang3; Wang, Xiao2,3; Zhang, Hao1 |
刊名 | JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
![]() |
出版日期 | 2019-02-01 |
卷号 | 124页码:78-91 |
关键词 | HartSift SIFT CPU High performance Feature extraction |
ISSN号 | 0743-7315 |
DOI | 10.1016/j.jpdc.2018.10.012 |
英文摘要 | Stable local image feature detection is a fundamental problem in computer vision and is critical for obtaining the corresponding interest points among images. As a popular and robust feature extraction algorithm, the scale invariant feature transform (SIFT) is widely used in various domains, such as image stitching and remote sensing image registration. However, the computational complexity of SIFT is extremely high, which limits its application in real-time systems and large-scale data processing tasks. Thus, we propose several efficient optimizations to realize a high-performance SIFT (HartSift) by exploiting the computing resources of CPUs and GPUs in a heterogeneous machine. Our experimental results show that HartSift processes an image within 3.07 similar to 7.71 ms, which is 55.88 similar to 121.99 times, 5.17 similar to 6.88 times, and 1.25 similar to 1.79 times faster than OpenCV SIFT, SiftGPU, and CudaSift, respectively. (C) 2018 Elsevier Inc. All rights reserved. |
资助项目 | National Natural Science Foundation of China[61602443] ; National Natural Science Foundation of China[61432018] ; National Natural Science Foundation of China[61521092] ; National Natural Science Foundation of China[61502450] ; National Key Research and Development Program of China[2107YFB0202105] ; National Key Research and Development Program of China[2016YFE0100300] ; National Key Research and Development Program of China[2017YFB0202302] ; Key Technology Research and Development Programs of Guangdong Province[2015B010108006] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000452939400008 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://119.78.100.204/handle/2XEOYT63/3508] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Jia, Haipeng |
作者单位 | 1.Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China 2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Shice,Li, Zhihao,Jia, Haipeng,et al. Efficient parallel optimizations of a high-performance SIFT on GPUs[J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING,2019,124:78-91. |
APA | Liu, Shice.,Li, Zhihao.,Jia, Haipeng.,Zhang, Yunquan.,Li, Shigang.,...&Zhang, Hao.(2019).Efficient parallel optimizations of a high-performance SIFT on GPUs.JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING,124,78-91. |
MLA | Liu, Shice,et al."Efficient parallel optimizations of a high-performance SIFT on GPUs".JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 124(2019):78-91. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。