中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Binary Volumetric Convolutional Neural Networks for 3-D Object Recognition

文献类型:期刊论文

作者Ma, Chao3; An, Wei3; Lei, Yinjie1; Guo, Yulan2,3
刊名IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
出版日期2019
卷号68期号:1页码:38-48
关键词3-D object recognition convolutional neural network (CNN) deep learning (DL) network binarization volumetric representation
ISSN号0018-9456
DOI10.1109/TIM.2018.2840598
英文摘要To address the high computational and memory cost in 3-D volumetric convolutional neural networks (CNNs), we propose an approach to train binary volumetric CNNs for 3-D object recognition. Our method is specifically designed for 3-D data, in which it transforms the inputs and weights in convolutional/fully connected layers to binary values, which can potentially accelerate the networks by efficient bitwise operations. Two loss calculation methods are designed to solve the accuracy decrease problem when the weights in the last layer are binarized. Four binary volumetric CNNs are obtained from their corresponding floating-point networks using our approach. Evaluations on three public datasets from different domains (Computer Aided Design (CAD), light detection and ranging (LiDAR), and RGB-D) show that our binary volumetric CNNs can achieve a comparable recognition performance as their floating-point counterparts but consume less computational and memory resources.
资助项目National Natural Science Foundation of China[61403265] ; National Natural Science Foundation of China[61602499] ; National Natural Science Foundation of China[61471371] ; Science and Technology Plan of Sichuan Province[2015SZ0226] ; National Postdoctoral Program for Innovative Talents[BX201600172] ; China Postdoctoral Science Foundation
WOS研究方向Engineering ; Instruments & Instrumentation
语种英语
WOS记录号WOS:000452611600003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/3514]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Guo, Yulan
作者单位1.Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Sichuan, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Natl Univ Def Technol, Coll Elect Sci, Changsha 410073, Hunan, Peoples R China
推荐引用方式
GB/T 7714
Ma, Chao,An, Wei,Lei, Yinjie,et al. Binary Volumetric Convolutional Neural Networks for 3-D Object Recognition[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2019,68(1):38-48.
APA Ma, Chao,An, Wei,Lei, Yinjie,&Guo, Yulan.(2019).Binary Volumetric Convolutional Neural Networks for 3-D Object Recognition.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,68(1),38-48.
MLA Ma, Chao,et al."Binary Volumetric Convolutional Neural Networks for 3-D Object Recognition".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 68.1(2019):38-48.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。