中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
MEMN:Multiple Vectors Embedding for Multi-Label Networks

文献类型:期刊论文

作者Liu, Zhuang3,4; Pu, Juhua3,4; Liu, Xingwu1,2; Chen, Yujun3,4
刊名IEEE ACCESS
出版日期2018
卷号6页码:66143-66152
关键词Network embedding multiple vectors multi-label classification link prediction
ISSN号2169-3536
DOI10.1109/ACCESS.2018.2878870
英文摘要Network embedding, which assigns vectors to network nodes in a manner that preserves the network features, is a hotspot of network research in recent years. A salient common feature of the existing approaches is that each node is mapped to exactly one vector. This one-vector mapping is insufficient to represent the nodes' attribution in those extensively existed networks whose nodes' have multiple labels. In this paper, we present MEMN, a novel approach of multiple vectors embedding for multi-labeled networks. For any node in the network, MEMN employs Node2vecWalk to generate its neighbor nodes. We maintain a neighbor cluster center for each label of the node and induce its label by clustering the embeddings of the neighbor nodes. Then, we assign vectors, one per label, to the node. This method can be non-parameterized, namely, NP-MEMN method. That is, if the number of label vectors for a node is not given, NP-MEMN can learn during embedding. Empirical studies on real datasets show that either MEMN or NP-MEMN outperforms many widely used methods in both multi-label classification and link prediction.
资助项目National Key Research and Development Program of China[2017YFB1002000] ; National Natural Science Foundation of China[61502320] ; Science Foundation of Shenzhen City in China ; State Key Laboratory of Software Development Environment
WOS研究方向Computer Science ; Engineering ; Telecommunications
语种英语
WOS记录号WOS:000452407300001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/3504]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Xingwu
作者单位1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Beihang Univ, Engn Res Ctr ACAT, Minist Educ, Beijing 100191, Peoples R China
4.Beihang Univ, Res Inst, Shenzhen 518057, Peoples R China
推荐引用方式
GB/T 7714
Liu, Zhuang,Pu, Juhua,Liu, Xingwu,et al. MEMN:Multiple Vectors Embedding for Multi-Label Networks[J]. IEEE ACCESS,2018,6:66143-66152.
APA Liu, Zhuang,Pu, Juhua,Liu, Xingwu,&Chen, Yujun.(2018).MEMN:Multiple Vectors Embedding for Multi-Label Networks.IEEE ACCESS,6,66143-66152.
MLA Liu, Zhuang,et al."MEMN:Multiple Vectors Embedding for Multi-Label Networks".IEEE ACCESS 6(2018):66143-66152.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。