Self-organizing weighted incremental probabilistic latent semantic analysis
文献类型:期刊论文
作者 | Li, Ning2,3; Shi, Zhongzhi2; He, Qing2; Zhuang, Fuzhen2; Yang, Kun1; Luo, Wenjuan2 |
刊名 | INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
![]() |
出版日期 | 2018-12-01 |
卷号 | 9期号:12页码:1987-1998 |
关键词 | Probabilistic latent semantic analysis Weighted incremental learning Similarity Big data |
ISSN号 | 1868-8071 |
DOI | 10.1007/s13042-017-0681-9 |
英文摘要 | PLSA (Probabilistic Latent Semantic Analysis) is a popular topic modeling technique which has been widely applied to text mining applications to discover the underlying topics embedded in the data corpus. However, due to the variability of increasing data, it is necessary to discover the dynamic topics and process the large dataset incrementally. Moreover, PLSA models suffer from the problem of inferencing new documents. To overcome these problems, in this paper, we propose a novel Weighted Incremental PLSA algorithm called WIPLSA to dynamically discover topics and incrementally learn the topics from new documents. The experiments verify that the proposed WIPLSA could capture the dynamic topics hidden in the dynamic updating data corpus. Compared with PLSA, MAP PLSA and QB PLSA, WIPLSA performs better in perspexity on large dataset, which make it applicable for big data mining. In addition, WIPLSA has good performance in the application of document categorization. |
资助项目 | National Natural Science Foundation of China[91546122] ; National Natural Science Foundation of China[61602438] ; National Natural Science Foundation of China[61573335] ; National Natural Science Foundation of China[61473273] ; National Natural Science Foundation of China[61473274] ; National Natural Science Foundation of China[61363058] ; National High-tech R&D Program of China (863 Program)[2014AA015105] ; National Science and Technology Support Program[2014BAK02B07] ; National major R&D program of Beijing Municipal Science & Technology Commission[Z161100002616032] ; Guangdong provincial science and technology plan projects[2015 B 010109005] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000450175600003 |
出版者 | SPRINGER HEIDELBERG |
源URL | [http://119.78.100.204/handle/2XEOYT63/4339] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Li, Ning |
作者单位 | 1.Natl Inst Metrol, Beijing 100029, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China 3.Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Ning,Shi, Zhongzhi,He, Qing,et al. Self-organizing weighted incremental probabilistic latent semantic analysis[J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS,2018,9(12):1987-1998. |
APA | Li, Ning,Shi, Zhongzhi,He, Qing,Zhuang, Fuzhen,Yang, Kun,&Luo, Wenjuan.(2018).Self-organizing weighted incremental probabilistic latent semantic analysis.INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS,9(12),1987-1998. |
MLA | Li, Ning,et al."Self-organizing weighted incremental probabilistic latent semantic analysis".INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 9.12(2018):1987-1998. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。