中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography

文献类型:期刊论文

作者Hui Meng; Kun Wang; Yuan Gao; Yushen Jin; Xibo Ma; Jie Tian
刊名IEEE Transactions on Medical Imaging
出版日期2019
卷号期号:页码:
关键词Fluorescence Tomography Multi-modality Fusion Brain
DOI10.1109/TMI.2019.2912222
产权排序1
英文摘要

Fluorescence molecular tomography (FMT), as a powerful imaging technique in preclinical research, can offer the three-dimensional distribution of biomarkers by detecting the fluorescently labelled probe noninvasively. However, because of the light scattering effect and the ill-pose of inverse problem, it is challenging to develop an efficient reconstruction method, which can provide accurate location and morphology of the fluorescence distribution. In this research, we proposed a novel adaptive Gaussian weighted Laplace prior (AGWLP) regularization method, which assumed the variance of fluorescence intensity between any two voxels had a non-linear correlation with their Gaussian distance. It utilized an adaptive Gaussian kernel parameter strategy to achieve accurate morphological reconstructions in FMT. To evaluate the performance of AGWLP method, we conducted numerical simulation and in vivo experiments. The results were compared with fast iterative shrinkage (FIS) thresholding method, Split Bregman-resolved TV (SBRTV) regularization method and Gaussian weighted Laplace prior (GWLP) regularization method. We validated in vivo imaging results against planar fluorescence images of frozen sections. The results demonstrated that AGWLP method achieved superior performance in both location and shape recovery of fluorescence distribution. This enabled FMT more suitable and practical for in vivo visualization of biomarkers.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/25830]  
专题自动化研究所_中国科学院分子影像重点实验室
通讯作者Kun Wang; Jie Tian
推荐引用方式
GB/T 7714
Hui Meng,Kun Wang,Yuan Gao,et al. Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography[J]. IEEE Transactions on Medical Imaging,2019,无(无):无.
APA Hui Meng,Kun Wang,Yuan Gao,Yushen Jin,Xibo Ma,&Jie Tian.(2019).Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography.IEEE Transactions on Medical Imaging,无(无),无.
MLA Hui Meng,et al."Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography".IEEE Transactions on Medical Imaging 无.无(2019):无.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。