Improved generative adversarial networks using the total gradient loss for the resolution enhancement of fluorescence images
文献类型:期刊论文
作者 | Zhang, Chong1,2,3![]() ![]() ![]() ![]() ![]() |
刊名 | BIOMEDICAL OPTICS EXPRESS
![]() |
出版日期 | 2019-09-01 |
卷号 | 10期号:9页码:4742-4756 |
ISSN号 | 2156-7085 |
DOI | 10.1364/BOE.10.004742 |
通讯作者 | Tian, Jie(jie.tian@ia.ac.cn) |
英文摘要 | Because of the optical properties of medical fluorescence images (FIs) and hardware limitations, light scattering and diffraction constrain the image quality and resolution. In contrast to device-based approaches, we developed a post-processing method for Fl resolution enhancement by employing improved generative adversarial networks. To overcome the drawback of fake texture generation, we proposed total gradient loss for network training. Fine-tuning training procedure was applied to further improve the network architecture. Finally, a more agreeable network for resolution enhancement was applied to actual FIs to produce sharper and clearer boundaries than in the original images. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement |
资助项目 | Ministry of Science and Technology of the People's Republic of China[2017YFA0205200] ; Ministry of Science and Technology of the People's Republic of China[2015CB755500] ; Ministry of Science and Technology of the People's Republic of China[2016YFC0103803] ; Ministry of Science and Technology of the People's Republic of China[2018YFC0910602] ; National Natural Science Foundation of China[61671449] ; National Natural Science Foundation of China[81227901] ; National Natural Science Foundation of China[81527805] ; Chinese Academy of Sciences[GJJSTD20170004] ; Chinese Academy of Sciences[KFJ-STS-ZDTP-059] ; Chinese Academy of Sciences[QYZDJ-SSW-JSC005] ; Chinese Academy of Sciences[XDBS01030200] ; Chinese Academy of Sciences[YJKYYQ20180048] |
WOS研究方向 | Biochemistry & Molecular Biology ; Optics ; Radiology, Nuclear Medicine & Medical Imaging |
语种 | 英语 |
WOS记录号 | WOS:000484088600029 |
出版者 | OPTICAL SOC AMER |
资助机构 | Ministry of Science and Technology of the People's Republic of China ; National Natural Science Foundation of China ; Chinese Academy of Sciences |
源URL | [http://ir.ia.ac.cn/handle/173211/25834] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
通讯作者 | Tian, Jie |
作者单位 | 1.Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 3.Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China 4.BUAA CCMU Adv Innovat Ctr Big Data Based Precis M, Beijing 100083, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Chong,Wang, Kun,An, Yu,et al. Improved generative adversarial networks using the total gradient loss for the resolution enhancement of fluorescence images[J]. BIOMEDICAL OPTICS EXPRESS,2019,10(9):4742-4756. |
APA | Zhang, Chong,Wang, Kun,An, Yu,He, Kunshan,Tong, Tong,&Tian, Jie.(2019).Improved generative adversarial networks using the total gradient loss for the resolution enhancement of fluorescence images.BIOMEDICAL OPTICS EXPRESS,10(9),4742-4756. |
MLA | Zhang, Chong,et al."Improved generative adversarial networks using the total gradient loss for the resolution enhancement of fluorescence images".BIOMEDICAL OPTICS EXPRESS 10.9(2019):4742-4756. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。