Visual Localization Using Sparse Semantic 3D Map
文献类型:会议论文
作者 | Tianxin Shi![]() ![]() ![]() ![]() |
出版日期 | 2019 |
会议日期 | 2019-9 |
会议地点 | Taipei |
英文摘要 | Accurate and robust visual localization under a wide range of viewing condition variations including season and illumination changes, as well as weather and day-night variations, is the key component for many computer vision and robotics applications. Under these conditions, most traditional methods would fail to locate the camera. In this paper we present a visual localization algorithm that combines structure-based method and image-based method with semantic information. Given semantic information about the query and database images, the retrieved images are scored according to the semantic consistency of the 3D model and the query image. Then the semantic matching score is used as weight for RANSAC's sampling and the pose is solved by a standard PnP solver. Experiments on the challenging long-term visual localization benchmark dataset demonstrate that our method has significant improvement compared with the state-of-the-arts. |
文献子类 | ICIP |
源URL | [http://ir.ia.ac.cn/handle/173211/26088] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_机器人视觉团队 |
作者单位 | Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Tianxin Shi,Shuhan Shen,Xiang Gao,et al. Visual Localization Using Sparse Semantic 3D Map[C]. 见:. Taipei. 2019-9. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。