中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Supervised Polsar image classification by combining multiple features

文献类型:会议论文

作者Huang, Xiayuan1; Nie, Xiangli1; Qiao, Hong1; Zhang, Bo2
出版日期2019
会议日期2019/9/22-9/25
会议地点Taipei, Taiwan
英文摘要

For polarimetric synthetic aperture radar (PolSAR) image
classification, each pixel can be represented by multiple fea-
tures from different perspectives, such as polarimetric feature
(PF), texture feature (TF) and color feature (CF). Both multi-
view canonical correlation analysis (MCCA) and multi-view
spectral embedding (MSE) are two unsupervised multi-view
subspace learning methods which search for different pro-
jection matrices for different features to combine multiple
features in a common low-dimensional feature space. How-
ever, MCCA emphasizes the correlation of multiple features
and MSE learns the complementarity of multiple features.
To deeply learn the relation of multiple features, we incor-
porate MCCA with MSE based on the label information and
a symmetric version of revised Wishart (SRW) distance for
supervised PolSAR image feature extraction. Experimental
results confirm that the proposed method can improve the
classification performance.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/26118]  
专题自动化研究所_复杂系统管理与控制国家重点实验室
自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组
通讯作者Huang, Xiayuan
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.AMSS, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Huang, Xiayuan,Nie, Xiangli,Qiao, Hong,et al. Supervised Polsar image classification by combining multiple features[C]. 见:. Taipei, Taiwan. 2019/9/22-9/25.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。