PredNet and CompNet: Prediction and High-Precision Compensation of In-Plane Shape Deformation for Additive Manufacturin
文献类型:会议论文
作者 | Zhen Shen![]() ![]() ![]() |
出版日期 | 2019-08 |
会议日期 | 2019 |
会议地点 | Vancouver, Canada |
英文摘要 | The error compensation for printed objects in additive manufacturing (AM) has always been one of the most critical problems. The precision control of the AM is usually more difficult than the subtractive manufacturing system, whose precision can reach the micron level easily by using a servo system. For the AM, there usually exist shrinkage and curling effects which lead to deformation. In this paper, we focus on the in-plane shape deformation problem, and we build the PredNet and CompNet, using deep neural networks for the error prediction and compensation. We test our methods on dental crown models. We generate deformed models by simulationofthetranslation,scalingdownandrotationdeformation. The minimum F1 scores of error prediction and compensation can be up to 0.982. |
源URL | [http://ir.ia.ac.cn/handle/173211/26143] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
通讯作者 | Gang Xiong |
作者单位 | 中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Zhen Shen,Shang XQ,Gang Xiong. PredNet and CompNet: Prediction and High-Precision Compensation of In-Plane Shape Deformation for Additive Manufacturin[C]. 见:. Vancouver, Canada. 2019. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。