中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Continual learning of context-dependent processing in neural networks

文献类型:期刊论文

作者Ceng GX(曾冠雄); Chen Y(陈阳); Cui B(崔波); Yu S(余山)
刊名nature machine intelligence
出版日期2019-08
期号1页码:364–372
关键词Continual Learning,Context dependent Learning
英文摘要

Deep neural networks are powerful tools in learning sophisticated but fixed mapping rules between inputs and outputs, thereby limiting their application in more complex and dynamic situations in which the mapping rules are not kept the same but change according to different contexts. To lift such limits, we developed an approach involving a learning algorithm, called orthogonal weights modification, with the addition of a context-dependent processing module. We demonstrated that with orthogonal weights modification to overcome catastrophic forgetting, and the context-dependent processing module to learn how to reuse a feature representation and a classifier for different contexts, a single network could acquire numerous context-dependent mapping rules in an online and continual manner, with as few as approximately ten samples to learn each. Our approach should enable highly compact systems to gradually learn myriad regularities of the real world and eventually behave appropriately within it.

源URL[http://ir.ia.ac.cn/handle/173211/26152]  
专题自动化研究所_脑网络组研究中心
通讯作者Yu S(余山)
推荐引用方式
GB/T 7714
Ceng GX,Chen Y,Cui B,et al. Continual learning of context-dependent processing in neural networks[J]. nature machine intelligence,2019(1):364–372.
APA Ceng GX,Chen Y,Cui B,&Yu S.(2019).Continual learning of context-dependent processing in neural networks.nature machine intelligence(1),364–372.
MLA Ceng GX,et al."Continual learning of context-dependent processing in neural networks".nature machine intelligence .1(2019):364–372.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。