Understanding and Predicting Users’ Rating Behavior: A Cognitive Perspective
文献类型:期刊论文
作者 | Qiudan Li![]() ![]() ![]() ![]() |
刊名 | INFORMS Journal on Computing
![]() |
出版日期 | 2019 |
期号 | 1页码:1-15 |
关键词 | Rating Behaviors Analysis Cognition Theory Rating Prediction |
ISSN号 | 1526-5528 |
英文摘要 | Online reviews are playing an increasingly important role in understanding and predicting users’ rating behavior, which brings great opportunities for users and organizations to make better decisions. In recent years, rating prediction has become a research hotspot. Existing research primarily focuses on generating content representation based on |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/26168] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_互联网大数据与安全信息学研究中心 |
通讯作者 | Daniel Zeng |
作者单位 | The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
推荐引用方式 GB/T 7714 | Qiudan Li,Daniel Zeng,Jingjun Xu David,et al. Understanding and Predicting Users’ Rating Behavior: A Cognitive Perspective[J]. INFORMS Journal on Computing,2019(1):1-15. |
APA | Qiudan Li,Daniel Zeng,Jingjun Xu David,Ruoran Liu,&Riheng Yao.(2019).Understanding and Predicting Users’ Rating Behavior: A Cognitive Perspective.INFORMS Journal on Computing(1),1-15. |
MLA | Qiudan Li,et al."Understanding and Predicting Users’ Rating Behavior: A Cognitive Perspective".INFORMS Journal on Computing .1(2019):1-15. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。