中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Joint Framework for Entity Discovery and Linking in Chinese Questions

文献类型:会议论文

作者Ziqi Lin1,2; Wancheng Ni1; Haidong Zhang1; Yu Liu1; Yiping Yang1
出版日期2017-12
会议日期2017-12
会议地点新加坡
关键词Entity Discovery Entity Linking Joint Method Question Representation Concept Knowledge Tree
英文摘要

Entity discovery and linking can help to understand the questions semantics and infer answers in question answering systems. In this paper, we study the characteristics of Chinese questions and propose a joint
framework that leverages the mutual dependency between entity discovery and linking to enhance their performances. It jointly connects a joint parsing method based on concept knowledge tree for entity discovery, with candidate entity generation of entity linking. And we also investigate conditional random fields to detect entity mentions and filter
them with candidate entity generation. Experiments show that our proposed method outperforms state-of-the-art methods on a real dataset.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/26219]  
专题自动化研究所_综合信息系统研究中心
通讯作者Wancheng Ni
作者单位1.Integrated Information System Research Center, CASIA,
2.University of Chinese Academy of Science
推荐引用方式
GB/T 7714
Ziqi Lin,Wancheng Ni,Haidong Zhang,et al. A Joint Framework for Entity Discovery and Linking in Chinese Questions[C]. 见:. 新加坡. 2017-12.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。