SnoreNet: Detecting Snore Events from Raw Sound Recordings
文献类型:会议论文
作者 | Jingpeng, Sun![]() ![]() ![]() ![]() |
出版日期 | 2019 |
会议日期 | July 23 - July 27 |
会议地点 | Berlin, Germany |
英文摘要 | Snoring is one of the earliest symptoms of Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS). Snore detection is the first step in developing non-invasive, low-cost, and totally sound-based OSAHS analysis approaches. In this work, we propose a simple yet effective deep neural network, named SnoreNet, for detecting snores from a continuous sound recording. Without manually crafted features, SnoreNet can capture the characteristics of snores. Since snore varies in temporal length, SnoreNet combines output from multiple feature maps to detect snore. In each feature map, SnoreNet uses a set of default bounding box generated by a base length and different scales to match snores. SnoreNet adjusts the box to better locate snores and predicts a score for the presence of snore in each default bounding box. The performance of SnoreNet was evaluated on a newly collected snore pattern classes dataset, which achieves 81.82% average precision (AP). |
源URL | [http://ir.ia.ac.cn/handle/173211/26224] ![]() |
专题 | 自动化研究所_智能制造技术与系统研究中心_多维数据分析团队 |
通讯作者 | Xiyuan, Hu |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.Guanganmen Hospital, China Academy of Chinese Medical |
推荐引用方式 GB/T 7714 | Jingpeng, Sun,Xiyuan, Hu,Yingying, Zhao,et al. SnoreNet: Detecting Snore Events from Raw Sound Recordings[C]. 见:. Berlin, Germany. July 23 - July 27. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。