丫蕊花和元宝槭的化学成分研究
文献类型:学位论文
作者 | 谢百波 |
学位类别 | 硕士 |
答辩日期 | 2005 |
授予单位 | 中国科学院昆明植物研究所 |
授予地点 | 中国科学院昆明植物研究所 |
导师 | 陈昌祥 |
关键词 | 化学成分 丫蕊花 螺甾烷 胆甾统 元宝槭 黄酮苷 |
其他题名 | CHEMICAL CONSTITUENTS OF YPSILANDRA THIBETICA AND ACER TRUNCATUM |
学位专业 | 植物学 |
中文摘要 | 本论文对两种植物的化学成分进行了研究,包括百合科(Lihoceoe)植物-丫蕊花(Ypsilandra thibetica Franch.)和械树科(Aceraceae)1值物-元宝械(Acer truncatum Bunge)。应用硅胶、反相材料(Rp-18)·Mcl gelcHP-20P、葡聚糖凝胶(sePhadex LH-20)、大孔树脂、聚酞胺、半制备HPLC等多种分离材料和分离手段,结合现代波谱技术和化学方法,从上述两种植物中共分离鉴定了44个化合物,其中新化合物25个。化合物结构类型涉及螺拼烷型渊体皂营及昔元、胆彬烷型澎体皂普、C-22甾苷、五环三萜、黄酮苷、鞘糖酯、植物甾醇、碳水化合物等。从丫蕊花属植物中分得的内侧连芹糖的螺拼烷型渐体皂普和16,23-ePoxy四氢毗喃侧链与岩藻糖的C-1·C-2形成六元环的胆渊烷类配糖体到目前为止仅发现于同族的胡麻花属(Heloniopsl’s)植物,从植物化学的角度支持了两属较近的亲缘关系,为胡麻花族植物的系统演化提供了一定的证据。一系列27-羟基取代的螺渊烷化合物的差向异构体和系列糖基单乙酰化的胆彬烷衍生物在正反相薄层层析时均为单一斑点,通过常规方法无法有效分离,利用半制备型HPLC才分离成功。元宝械中黄酮类化合物的分离和结构鉴定解决了多年来开发元宝械总黄酮结构不明的问题。论文最后对2000-2004年街体皂昔的研究进展进行了综述,列举了新化合物195个,参考文献77篇。第一章丫蕊花的化学成分研究丫蕊花((Ypsilandra thibeticaFranch.)为百合科植物,分布于我国华中、西南等省的海拔1300-2800m林下。活性筛选结果表明:该植物的粗提物具有止血.活性。为寻找新的止血.活性成分并配合“妇科止血新药CHY,”的研究阐明该植物的化学成分,本论文对采自云南昭通的丫蕊花属植物丫蕊花的化学成分进行了系统研究,利用多种分离材料和分离技术,从中分离鉴定了33个化合物,其中新化合物25个(包括13个螺甾烷型甾体皂苷及苷元,11个具有16,23-ePoxy四氢毗喃侧链的胆出烷酮类皂苷和1个C-22甾苷)。芹糖直接连在普元上位于糖链内侧的形体皂甾:和侧链与岩藻糖成环的胆幽烷型皂普是该属植物的特征性成分。上述两种类型化合物到目前为止,仅在同族胡麻花属植物中发现过,为丫蕊花的分类学地位提供了一定的化学依据。为验证推导结构的正确性,选取其中两个化合物(5和30)进行了X-ray衍射分析,确证了上述化合物的相对立体化学。上述彬体皂普在分离上具有一定难度。其中,一类具27-OH取代的螺街烷型彬体皂昔为25只和255两种差向异构体并存,并且在甲醇的水溶液 中会发生构型转化,分离难度较大。与此同时,我们发现越早分得的异构体25R构型所占比例越大,据此我们推测原植物中可能25R构型占优势。另外,某些岩藻糖单乙酰化的胆拼烷型皂普(24和25,26和27)其结构差别仅是乙酞基取代位置不同,在正反相TLC检测时均显示近似单一斑点,给分离纯化造成了困难。上述两类化合物均采用半制备型HPLc分离得到单体化合物。第二章元宝械的化学成分研究元宝械(Acer truncatum Bunge)是械树科(Aceraceae)植物,因其翅果形状像古代中国“斋锭”而得氛元宝械有一定的药用价值,其根或根皮具有祛风除湿的功效,某些地区民间用于治疗关节疼痛·骨折·跌打损伤等症。据报道·从元宝械树叶的提取物经分离纯化获得的总黄酮具有抗氧化活性,但黄酮醇昔的化学结构不详。为此,本论文对采自云南的元宝械的化学成分进行了研究,从中分离鉴定了11个化合物(其中6个黄酮仆,2个五环三菇和1个鞘糖酷类化合物以及豆甾醇、卫矛醇)。黄酮营的分离和结构鉴定解决了元宝械叶应用中有效成分结构不明的问题,为进一步开发利用元宝械叶资源提供了依据。第三章综述本章对2000-2004年期间彬体皂普的研究进展进行了综述,列举了新化合物195个,参考文献77篇。 |
英文摘要 | This dissertation elaborated the studies on the chemical constituents of two plants, Ypsilandra thibetica Franch. and Acer truncatum Bunge. From above two plants, totally 44 compounds were isolated and identified by the various chromatographies over silica gel column, reverse phase column (Rp-18), Sephadex LH-20, semi-preparative HPLC. Among them, 25 compounds were elucidated to be new ones, including 12 spirostane saponins and 1 sapogenin, 11 cholestane glycosides, 1 C-22 steroidal glycoside. It is noteworthy that a series of spirostanol saponins with 3-0-inner-apiofuranosyl residues are very few in number. In addition, the number of cholestane saponins with unusual dioxane framework was little too. The isolated compounds are an important addition to those groups. These compounds above mentioned were only found in the plant of Heloniopsis genus. This is an important evidence of taxonomy about the genus. The isolation and identification of flavanoid glycosides enunciated the main component of total flavonoids of A. truncatum. At last, new steroidal saponins (2000~2004) were reviewed. 195 new steroidal saponins and their bioactivities were listed. Chapter 1 Chemical Constituents of Ypsilandra thibetica The genus Ypsilandra (Liliaceae) with about 4 species were perennial plants mainly distributed in southwestern China. Among of these species, Y. thibetica has been used in Chinese folk medicine as hemostatic in Sichuan and Yunnan, China. To characterize the constituents of the species, we studied the chemical constituents of Y. thibetica collected from Zhaotong, Yunnan Province. As a result, 33 componds were isolated, in which 25 compounds were new including 12 spirostane saponins and 1 sapogenin, 11 cholestane glycosides, 1 C-22 steroidal glycoside." 1 . * isoypsilandrogenin (1) 2. * isoypsilandroside A (2) 3. * isoypsilandroside B (3) 4. * ypsilandroside A (4) 5. * ypsilandroside B (5) 6. (255)- spirost-5-en-3/?, 17a, 27-triol (6) 7. * (255)- spirost-5-en-3/?, 17a, 27-triol 3-O:a-L- rhamnopyranosyl- (l->2)-/?-D-apiofuranoside (7) 8. * (255)- spirost-5-en-3/?, 17a, 27-triol 3-<9-a-L-rhamnopyranosyl- (1->2)-[a-L-rhamnopyranosyl- (l->5)] -/?-D-apiofuranoside (8) 9. * (25i?)- spirost-5-en-3/?, 17a, 27-triol 3-O-a-L- rhamnopyranosyl-(1-+2)- p-D-apiofuranoside (9) 10. * (25i?)-spirost-5-en-3y?, 17a, 27-triol 3-O-a-L-rhamnopyranosyl-(1 ->2)- [a-L-rhamnopyranosyl-(l->5)] -/?-D-apiofuranoside (10)11. * heloniogenin 3-O-a-L-rhamnopyranosyl-(1->2)-[a-L-rhamno- pyranosyl -(l-5)] -D-apiofuranoside (11) 12. * isonarthogenin 3-0-a-L-rhamnopyranosyl-(l->2)-[a-L-rhamno-pyranosyl~(l-*5)] -/?-D-apiofuranoside (12) 13. *gentrogenin 3-0-a-L-hamnopyranosyl- (l-*-3) -a-L-rhamn-opyranosyl -(l-*4) -[a-L- rhamnopyranosyl-1--2) ]-/?-D-gluc-opyranoside (13) 14. pennogenin 3-0- a-L- rhamnopyranosyl - (1-+4)-p-D-glucopyra- noside (14) 15. pennogenin 3-0-a-L- rhamnopyranosyl- (1-*4)]-a-L- rhamnop yranosyl -(1->4)-/?-D-glucopyranoside (15) 16. pennogenin 3-0-a-L-rhamnopyranosyl-(l -*4)-a-L-rhamnopyrano- syl-(l->4)-[a-L-rhamnopyranosyl -(1-*-2)]- /?-D- glucopyranoside (16) 17. diosgenin 3-O-a-L-rhamnopyranosyl- (1->2)-/3-D-glucopyrano-side (17) 18. diosgenin 3-O-a-L- rhamnopyranosyl- (1->2)-[a-L- rhamnopyran-osyl -(1 -> 4)]-/?-D-glucopyranoside (18) 19. * diosgenin 3-0-oc-L- rhamnopyranosyl -(1->4)-a-L- rhamnop yranosyl -(1-* 4)-/?~D-glucopyranoside (19)20 diosgenin 3-0-a-L-rhamnopyranosyl-(l->4)-a-L- rhamnopyranosyl-(1->4)-[a-L-rhamnopyranosyl- (1->2)]-/?-D-glucopyranoside (20) 21. * 3/?, 16y5-dihydroxy-5a-6-oxo-bisnorcholanic acid-(22-*16)-lactone3-O-y5-D-glucopyranoside % (21) 22.prohelojapogenin (22) 23. * ypthibetogenin (23) 24. * 3'-acetylypthibetogenin (24) 25. acetylypthibetogenin (25) 26. 3'-acetylypthibetogenin 3-O-/?-D-glucopyranoside (26) 27. 4'- acetylypthibetogenin 3-0-/?-D-glucopyranoside (27) 28. * 22, 4'-diacetylypthibetogenin o. (28)29. 29. * 22, 4' -diacetylypthibetogenin 3-0-^-D-glucopyranoside (29) 30. 30. * ypsilanogenin (30) 31. 31.* ypsilanogenin 3-O-/?-D-glucopyranoside (31) 32. 31. * 3'- acetylypsilanogenin, 3-<9-/?-D-glucopyranoside (32) 33. * 5a-hydroxyypsilanogenin 3-0-/?-D-galactopyranoside (33) * NEW COMPOUNDS. Chapter 2 Chemical Constituents of Acer truncatum Acer truncatum is known to be a folk medicine for traumatic injury in China. This plant is a perennial tree which is distributed widely in China. The primary studies showed that this plant possessed anti-oxidation activities as the ethanolic extract of Ginkgo biloba did. However, the elaborated chemical constituents of this species have not been reported. Its bioactivities attracted us to investigate its chemical constituents. From the alcohol extract, 11 compounds were isolated. 1. kaempferol-3-O-a-L-rhamnopyranoside (1); 2. quercetin-3-0-/?-D-galactopyranoside (2); 3. quercetin-3-O-a-L-rhamnopyranoside (3); 4. quercetin-3-O-a-L-arabinopyranoside (4); 5. isorhamnetin-3-(9-a-L-arabinopyranoside (5); 6. myricetin-3-O-a-L-rhamnopyranoside (6); 7, ^-amyrin (7); 8. /?-amyrin acetate (8); 9. soyacerebroside I (9); 10. stigmasta-5,22-dien-3 fi-o\ (10); 11. dulcitol (11); Chapter 3 Review C-27 steroidal saponins were reviewed from 2000 to 2004. |
语种 | 中文 |
公开日期 | 2011-10-25 |
页码 | 142 |
源URL | [http://ir.kib.ac.cn/handle/151853/800] ![]() |
专题 | 昆明植物研究所_昆明植物所硕博研究生毕业学位论文 |
推荐引用方式 GB/T 7714 | 谢百波. 丫蕊花和元宝槭的化学成分研究[D]. 中国科学院昆明植物研究所. 中国科学院昆明植物研究所. 2005. |
入库方式: OAI收割
来源:昆明植物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。