Euler configurations and quasi-polynomial systems
文献类型:期刊论文
作者 | Albouy, A.; Fu, Y. |
刊名 | REGULAR & CHAOTIC DYNAMICS
![]() |
出版日期 | 2007 |
卷号 | 12期号:1页码:39-55 |
关键词 | relative equilibria point vortex real solutions |
ISSN号 | 1560-3547 |
英文摘要 | Consider the problem of three point vortices ( also called Helmholtz' vortices) on a plane, with arbitrarily given vorticities. The interaction between vortices is proportional to 1/r, where r is the distance between two vortices. The problem has 2 equilateral and at most 3 collinear normalized relative equilibria. This 3 is the optimal upper bound. Our main result is that the above standard statements remain unchanged if we consider an interaction proportional to r(b), for any b < 0. For 0 < b < 1, the optimal upper bound becomes 5. For positive vorticities and any b < 1, there are exactly 3 collinear normalized relative equilibria. The case b = -2 of this last statement is the wellknown theorem due to Euler: in the Newtonian 3-body problem, for any choice of the 3 masses, there are 3 Euler configurations ( also known as the 3 Euler points). These small upper bounds strengthen the belief of Kushnirenko and Khovanskii [ 18]: real varieties defined by simple systems should have a simple topology. We indicate some hard conjectures about the configurations of relative equilibrium and suggest they could be attacked within the quasi-polynomial framework. |
WOS标题词 | Science & Technology ; Physical Sciences ; Technology |
学科主题 | Astronomy & Astrophysics |
类目[WOS] | Mathematics, Applied ; Mechanics ; Physics, Mathematical |
研究领域[WOS] | Mathematics ; Mechanics ; Physics |
关键词[WOS] | RELATIVE EQUILIBRIA ; BIFURCATIONS ; FINITENESS ; DISTANCE ; ORBITS ; BODY |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000250845900004 |
公开日期 | 2012-02-05 |
源URL | [http://159.226.72.40/handle/332002/2354] ![]() |
专题 | 紫金山天文台_历算和天文参考系研究团组 |
作者单位 | 1.IMCCE, F-75014 Paris, France 2.Purple Mt Observ, Nanjing 210008, Peoples R China |
推荐引用方式 GB/T 7714 | Albouy, A.,Fu, Y.. Euler configurations and quasi-polynomial systems[J]. REGULAR & CHAOTIC DYNAMICS,2007,12(1):39-55. |
APA | Albouy, A.,&Fu, Y..(2007).Euler configurations and quasi-polynomial systems.REGULAR & CHAOTIC DYNAMICS,12(1),39-55. |
MLA | Albouy, A.,et al."Euler configurations and quasi-polynomial systems".REGULAR & CHAOTIC DYNAMICS 12.1(2007):39-55. |
入库方式: OAI收割
来源:紫金山天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。