中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
聚苯胺纳米阵列的模板合成及其在DNA电化学生物传感器中的应用

文献类型:学位论文

作者常海欣
学位类别博士
答辩日期2007-05-28
授予单位中国科学院金属研究所
授予地点金属研究所
导师石南林
关键词导电聚苯胺 模板 纳米阵列 DNA 电化学生物传感器 探针
其他题名Study on Synthesis of Polyanine Nanoarray by Template method and the Application on DNA Electrochemical Biosensor
学位专业材料学
中文摘要一维导电聚苯胺纳米材料因为同时具有高的导电性与优越的化学稳定性能,在DNA生物传感器领域有很好的应用前景。基于导电聚苯胺的生物传感器在灵敏度、选择性等方面较差,本论文将聚苯胺纳米阵列通过模板法可控合成在生物传感电极上,以聚苯胺纳米阵列为信号增强媒介, 将DNA杂交信号放大,从而提高DNA生物传感器的灵敏度。 本论文通过优化阳极氧化过程工艺参数(如电压、酸浓度、酸液种类、温度等)调节氧化铝纳米多孔模板的形貌。采用二步阳极氧化法在草酸电解液中对高纯度铝箔进行氧化电压为80V的阳极氧化,制备了纳米孔直径在55nm左右的均一多孔氧化铝模板。纳米模板的形成是阳极氧化过程中氧化和溶解达到特定平衡的结果,其机理是在氧化和溶解达到特定平衡的条件下,同时在铝被氧化膨胀造成的应变作用下,纳米孔可以均匀地垂直表面生长。其中电压对模板孔的形貌影响最大。模板的形貌可以通过阳极氧化过程参数(如电压、酸浓度、酸液种类、温度等)进行调节。同时研究了不同的酸蚀溶解时间对模板形貌的影响,结果表明在0.5M磷酸中溶解时间大于6小时时,纳米多孔氧化铝模板彻底被破坏变为氧化铝纳米纤维结构。 本论文在制备的氧化铝多孔模板中可控合成了聚苯胺纳米阵列,探讨了苯胺单体在模板纳米级孔中聚合的机理,并在不同的聚合时间条件下,研究了聚合时间对聚苯胺纳米阵列的影响,实验证明在1-10分钟的聚合时间内,合成的聚苯胺纳米材料均为高度定向的纳米阵列。同时发展了一种模板辅助的方法将聚苯胺纳米阵列整合到电极上,制备了聚苯胺纳米阵列修饰的石墨电极。首先对磁控溅射沉积在电极上的铝膜进行阳极氧化形成纳米多孔氧化铝模板,然后在电极的模板上合成聚苯胺纳米阵列。在去除模板表面的聚苯胺膜后,再运用硫酸去除掉氧化铝模板,然后聚苯胺纳米阵列就被集成在电极上。 将设计的单链寡核苷酸探针共价连接在聚苯胺纳米阵列电极上,从而转变为DNA生物传感器。检测了聚苯胺纳米阵列DNA生物传感器的灵敏度和选择性。通过与不同浓度的靶标寡核苷酸杂交,杂交指示剂的电化学信号与靶标浓度在7.557fM到755.7fM范围内观察到了良好的线性度(线性系数R=0.99),检测限达到1fM,这个检测限比传统的聚苯胺生物传感器的灵敏度高1000倍。因为在杂交实验中运用的样品体积是300l,对应的靶标的绝对检测限是300zmol靶标分子。 聚苯胺纳米阵列DNA生物传感器具有高的灵敏度有两个原因。首先,聚苯胺纳米阵列具有高的有效比表面积,在检测中每根聚苯胺纳米线可以连接超过105个探针,使每根聚苯胺纳米线如同一个收集杂交信号的纳米器件,因而能够极大地提高生物传感器的检测灵敏度。其次,模板合成的聚苯胺纳米阵列的高度均一性可以提高纳米器件的效率,这种高度均一性来自模板纳米孔的均一性。 另外还研究了该传感器的重复使用性能,三次重复性测试的相对标准偏差只有3%,显示该生物传感器有很好的稳定性。同时检测了该生物传感器在超低靶标浓度(37.59 fM)下的选择性,实验表明通过优化杂交温度,该聚苯胺纳米阵列DNA生物传感器能够有效区分靶标寡核苷酸中的单碱基错配,显示了该生物传感器在核苷酸多态性中应用的潜力。
语种中文
公开日期2012-04-10
页码107
源URL[http://ir.imr.ac.cn/handle/321006/17011]  
专题金属研究所_中国科学院金属研究所
推荐引用方式
GB/T 7714
常海欣. 聚苯胺纳米阵列的模板合成及其在DNA电化学生物传感器中的应用[D]. 金属研究所. 中国科学院金属研究所. 2007.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。