热门
Low-temperature oxidation of CO catalysed by Co(3)O(4) nanorods
文献类型:期刊论文
作者 | X. W. Xie ; Y. Li ; Z. Q. Liu ; M. Haruta ; W. J. Shen |
刊名 | Nature
![]() |
出版日期 | 2009 |
卷号 | 458期号:7239页码:746-749 |
关键词 | carbon-monoxide oxide catalysts surface powders oxygen water |
ISSN号 | 0028-0836 |
中文摘要 | Low-temperature oxidation of CO, perhaps the most extensively studied reaction in the history of heterogeneous catalysis, is becoming increasingly important in the context of cleaning air and lowering automotive emissions(1,2). Hopcalite catalysts (mixtures of manganese and copper oxides) were originally developed for purifying air in submarines, but they are not especially active at ambient temperatures and are also deactivated by the presence of moisture(3,4). Noble metal catalysts, on the other hand, are water tolerant but usually require temperatures above 100 degrees C for efficient operation(5,6). Gold exhibits high activity at low temperatures and superior stability under moisture, but only when deposited in nanoparticulate form on base transition-metal oxides(7-9). The development of active and stable catalysts without noble metals for low-temperature CO oxidation under an ambient atmosphere remains a significant challenge. Here we report that tricobalt tetraoxide nanorods not only catalyse CO oxidation at temperatures as low as -77 degrees C but also remain stable in a moist stream of normal feed gas. High-resolution transmission electron microscopy demonstrates that the Co(3)O(4) nanorods predominantly expose their {110} planes, favouring the presence of active Co(3+) species at the surface. Kinetic analyses reveal that the turnover frequency associated with individual Co(3+) sites on the nanorods is similar to that of the conventional nanoparticles of this material, indicating that the significantly higher reaction rate that we have obtained with a nanorod morphology is probably due to the surface richness of active Co(3+) sites. These results show the importance of morphology control in the preparation of base transition-metal oxides as highly efficient oxidation catalysts. |
原文出处 | |
公开日期 | 2012-04-13 |
源URL | [http://210.72.142.130/handle/321006/32450] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
推荐引用方式 GB/T 7714 | X. W. Xie,Y. Li,Z. Q. Liu,et al. Low-temperature oxidation of CO catalysed by Co(3)O(4) nanorods[J]. Nature,2009,458(7239):746-749. |
APA | X. W. Xie,Y. Li,Z. Q. Liu,M. Haruta,&W. J. Shen.(2009).Low-temperature oxidation of CO catalysed by Co(3)O(4) nanorods.Nature,458(7239),746-749. |
MLA | X. W. Xie,et al."Low-temperature oxidation of CO catalysed by Co(3)O(4) nanorods".Nature 458.7239(2009):746-749. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。