Estimation of winter wheat evapotranspiration under water stress with two semiempirical approaches
文献类型:SCI/SSCI论文
作者 | Yu Q. |
发表日期 | 2004 |
关键词 | north china plain soil-water crop coefficient semiarid region maize lysimeter balance field |
英文摘要 | Winter wheat (Triticum aestivum L.) is one of most important crops in the North China Plain. However, soil water deficit (SWD) often occurs due to lack of precipitation in its growing season. In this study, we introduce two semiempirical approaches, a recharge model and the crop coefficient (K-c)-reference evapotranspiration (ET0) approach, to estimate wheat actual evapotranspiration (ET.) under no SWD and slight and severe SWD conditions. The recharge model allocated ET0 to reference evaporation and reference transpiration as a function of leaf area index. In the model, ETa is limited by soil water content, and crop water extraction for ETa is distributed through the soil profile as exponential functions of soil and root depth. The K-c-ET0 approach regarded ETa under the SWD condition as a logarithmic function of soil water availability. Under no SWD condition, the recharge model simulated 10-d ETa with a root mean square error (RMSE) of 5.58 mm and a bias of 0.95 mm compared with measurements from a large-scale weighing lysimeter. The two approaches both estimated seasonal evapotranspiration (ET) well compared with the adjusted ET (from the soil water balance and the recharge model-simulated deep drainage). The recharge model, which simulated the seasonal ET with the RMSE of 27.8 min and the bias of -8.0 mm, was better than the K-c-ET0 approach (RMSE = 31.7 mm and bias = -33.1 mm). The seasonal pattern of soil water stress coefficient (K-s) showed that there were faster water losses at grain-filling stage than at other stages. |
出处 | Agronomy Journal |
卷 | 96 |
期 | 1 |
页 | 159-168 |
收录类别 | SCI |
语种 | 英语 |
ISSN号 | 0002-1962 |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/22314] ![]() |
专题 | 地理科学与资源研究所_历年回溯文献 |
推荐引用方式 GB/T 7714 | Yu Q.. Estimation of winter wheat evapotranspiration under water stress with two semiempirical approaches. 2004. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。