中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Improving empirical mode decomposition using support vector machines for multifocus image fusion

文献类型:SCI/SSCI论文

作者Tian J.
发表日期2008
关键词multifocus image fusion empirical mode decomposition 'a-trous' wavelet transform support vector machines
英文摘要Empirical mode decomposition ( EMD) is good at analyzing nonstationary and nonlinear signals while support vector machines ( SVMs) are widely used for classification. In this paper, a combination of EMD and SVM is proposed as an improved method for fusing multifocus images. Experimental results show that the proposed method is superior to the fusion methods based on a-trous wavelet transform ( AWT) and EMD in terms of quantitative analyses by Root Mean Squared Error ( RMSE) and Mutual Information ( MI).
出处Sensors
8
4
2500-2508
收录类别SCI
语种英语
ISSN号1424-8220
源URL[http://ir.igsnrr.ac.cn/handle/311030/24227]  
专题地理科学与资源研究所_历年回溯文献
推荐引用方式
GB/T 7714
Tian J.. Improving empirical mode decomposition using support vector machines for multifocus image fusion. 2008.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。