Improving empirical mode decomposition using support vector machines for multifocus image fusion
文献类型:SCI/SSCI论文
作者 | Tian J. |
发表日期 | 2008 |
关键词 | multifocus image fusion empirical mode decomposition 'a-trous' wavelet transform support vector machines |
英文摘要 | Empirical mode decomposition ( EMD) is good at analyzing nonstationary and nonlinear signals while support vector machines ( SVMs) are widely used for classification. In this paper, a combination of EMD and SVM is proposed as an improved method for fusing multifocus images. Experimental results show that the proposed method is superior to the fusion methods based on a-trous wavelet transform ( AWT) and EMD in terms of quantitative analyses by Root Mean Squared Error ( RMSE) and Mutual Information ( MI). |
出处 | Sensors |
卷 | 8 |
期 | 4 |
页 | 2500-2508 |
收录类别 | SCI |
语种 | 英语 |
ISSN号 | 1424-8220 |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/24227] ![]() |
专题 | 地理科学与资源研究所_历年回溯文献 |
推荐引用方式 GB/T 7714 | Tian J.. Improving empirical mode decomposition using support vector machines for multifocus image fusion. 2008. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。