Exploiting Local Coherent Patterns for Unsupervised Feature Ranking
文献类型:期刊论文
作者 | Huang, Qinghua1; Tao, Dacheng2; Li, Xuelong3; Jin, Lianwen1; Wei, Gang1 |
刊名 | ieee transactions on systems man and cybernetics part b-cybernetics
![]() |
出版日期 | 2011-12-01 |
卷号 | 41期号:6页码:1471-1482 |
关键词 | Bicluster score feature selection unsupervised learning |
ISSN号 | 1083-4419 |
产权排序 | 3 |
英文摘要 | prior to pattern recognition, feature selection is often used to identify relevant features and discard irrelevant ones for obtaining improved analysis results. in this paper, we aim to develop an unsupervised feature ranking algorithm that evaluates features using discovered local coherent patterns, which are known as biclusters. the biclusters (viewed as submatrices) are discovered from a data matrix. these submatrices are used for scoring relevant features from two aspects, i.e., the interdependence of features and the separability of instances. the features are thereby ranked with respect to their accumulated scores from the total discovered biclusters before the pattern classification. experimental results show that this proposed method can yield comparable or even better performance in comparison with the well-known fisher score, laplacian score, and variance score using three uci data sets, well improve the results of gene expression data analysis using gene ontology annotation, and finally demonstrate its advantage of unsupervised feature ranking for high-dimensional data. |
WOS标题词 | science & technology ; technology |
学科主题 | automation & control systems ; computer science |
类目[WOS] | automation & control systems ; computer science, artificial intelligence ; computer science, cybernetics |
研究领域[WOS] | automation & control systems ; computer science |
关键词[WOS] | feature subset-selection ; classification ; discriminant ; algorithms |
收录类别 | SCI ; EI |
资助信息 | national basic research program of china (973 program);national natural science funds of china;specialized research funds for the doctoral program of higher education of china;fundamental research funds for the central universities;south china university of technology;state key laboratory of industrial control technology of zhejiang university |
语种 | 英语 |
WOS记录号 | WOS:000297342100003 |
公开日期 | 2012-06-29 |
源URL | [http://ir.opt.ac.cn/handle/181661/19866] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
作者单位 | 1.S China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Guangdong, Peoples R China 2.Univ Technol, Ctr Quantum Computat & Intelligent Syst, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia 3.Chinese Acad Sci, Ctr Opt Imagery Anal & Learning OPTIMAL, Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, Qinghua,Tao, Dacheng,Li, Xuelong,et al. Exploiting Local Coherent Patterns for Unsupervised Feature Ranking[J]. ieee transactions on systems man and cybernetics part b-cybernetics,2011,41(6):1471-1482. |
APA | Huang, Qinghua,Tao, Dacheng,Li, Xuelong,Jin, Lianwen,&Wei, Gang.(2011).Exploiting Local Coherent Patterns for Unsupervised Feature Ranking.ieee transactions on systems man and cybernetics part b-cybernetics,41(6),1471-1482. |
MLA | Huang, Qinghua,et al."Exploiting Local Coherent Patterns for Unsupervised Feature Ranking".ieee transactions on systems man and cybernetics part b-cybernetics 41.6(2011):1471-1482. |
入库方式: OAI收割
来源:西安光学精密机械研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。