Design and application of a microfluidic device for protein crystallization using an evaporation-based crystallization technique
文献类型:期刊论文
作者 | Yu, Yong1![]() ![]() ![]() ![]() ![]() |
刊名 | JOURNAL OF APPLIED CRYSTALLOGRAPHY
![]() |
出版日期 | 2012-02-01 |
卷号 | 45期号:2页码:53-60 |
关键词 | microfluidics protein crystallization |
ISSN号 | 0021-8898 |
通讯作者 | 于泳 |
合作状况 | 国际 |
中文摘要 | A new crystallization system is described, which makes it possible to use an evaporation-based microfluidic crystallization technique for protein crystallization. The gas and water permeability of the used polydimethylsiloxane (PDMS) material enables evaporation of the protein solution in the microfluidic device. The rates of evaporation are controlled by the relative humidity conditions, which are adjusted in a precise and stable way by using saturated solutions of different reagents. The protein crystals could nucleate and grow under different relative humidity conditions. Using this method, crystal growth could be improved so that approximately 1 mm-sized lysozyme crystals were obtained more successfully than using standard methods. The largest lysozyme crystal obtained reached 1.57 mm in size. The disadvantage of the good gas permeability in PDMS microfluidic devices becomes an advantage for protein crystallization. The radius distributions of aggregrates in the solutions inside the described microfluidic devices were derived from in situ dynamic light scattering measurements. The experiments showed that the environment inside of the microfluidic device is more stable than that of conventional crystallization techniques. However, the morphological results showed that the protein crystals grown in the microfluidic device could lose their morphological stability. Air bubbles in microfluidic devices play an important role in the evaporation progress. A model was constructed to analyze the relationship of the rates of evaporation and the growth of air bubbles to the relative humidity. |
英文摘要 | A new crystallization system is described, which makes it possible to use an evaporation-based microfluidic crystallization technique for protein crystallization. The gas and water permeability of the used polydimethylsiloxane (PDMS) material enables evaporation of the protein solution in the microfluidic device. The rates of evaporation are controlled by the relative humidity conditions, which are adjusted in a precise and stable way by using saturated solutions of different reagents. The protein crystals could nucleate and grow under different relative humidity conditions. Using this method, crystal growth could be improved so that approximately 1 mm-sized lysozyme crystals were obtained more successfully than using standard methods. The largest lysozyme crystal obtained reached 1.57 mm in size. The disadvantage of the good gas permeability in PDMS microfluidic devices becomes an advantage for protein crystallization. The radius distributions of aggregrates in the solutions inside the described microfluidic devices were derived from in situ dynamic light scattering measurements. The experiments showed that the environment inside of the microfluidic device is more stable than that of conventional crystallization techniques. However, the morphological results showed that the protein crystals grown in the microfluidic device could lose their morphological stability. Air bubbles in microfluidic devices play an important role in the evaporation progress. A model was constructed to analyze the relationship of the rates of evaporation and the growth of air bubbles to the relative humidity. |
学科主题 | 交叉与边缘领域的力学 |
分类号 | 一类 |
类目[WOS] | Crystallography |
研究领域[WOS] | Crystallography |
关键词[WOS] | VAPOR-DIFFUSION ; CRYSTAL-GROWTH ; OPTIMIZATION ; LYSOZYME ; DROPLETS ; NUCLEATION ; FLOW |
收录类别 | SCI |
原文出处 | http://scripts.iucr.org/cgi-bin/paper?ks5294 |
语种 | 英语 |
WOS记录号 | WOS:000299206400007 |
公开日期 | 2012-09-12 |
源URL | [http://dspace.imech.ac.cn/handle/311007/45653] ![]() |
专题 | 力学研究所_国家微重力实验室 |
通讯作者 | Yu Y(于泳) |
作者单位 | 1.Chinese Acad Sci, Key Lab Micrograv, Natl Micrograv Lab, Inst Mech, Beijing 100190, Peoples R China 2.Univ Hamburg, Inst Biochem & Mol Biol, DESY, D-22603 Hamburg, Germany 3.Univ Lubeck, Lab Struct Biol Infect & Inflammat, DESY, D-22607 Hamburg, Germany |
推荐引用方式 GB/T 7714 | Yu, Yong,Wang, Xuan,Oberthuer, Dominik,et al. Design and application of a microfluidic device for protein crystallization using an evaporation-based crystallization technique[J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY,2012,45(2):53-60. |
APA | Yu, Yong.,Wang, Xuan.,Oberthuer, Dominik.,Meyer, Arne.,Perbandt, Markus.,...&于泳.(2012).Design and application of a microfluidic device for protein crystallization using an evaporation-based crystallization technique.JOURNAL OF APPLIED CRYSTALLOGRAPHY,45(2),53-60. |
MLA | Yu, Yong,et al."Design and application of a microfluidic device for protein crystallization using an evaporation-based crystallization technique".JOURNAL OF APPLIED CRYSTALLOGRAPHY 45.2(2012):53-60. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。