Endocannabinoid-Dependent Homeostatic Regulation of Inhibitory Synapses by Miniature Excitatory Synaptic Activities
文献类型:期刊论文
作者 | Poo, Mu-ming![]() |
刊名 | JOURNAL OF NEUROSCIENCE
![]() |
出版日期 | 2009 |
卷号 | 29期号:42页码:13222-13231 |
关键词 | LONG-TERM DEPRESSION ELONGATION FACTOR-II DEPOLARIZATION-INDUCED SUPPRESSION DENDRITIC PROTEIN-SYNTHESIS ENDOGENOUS CANNABINOIDS METABOTROPIC GLUTAMATE NEOCORTICAL SYNAPSES TRANSMITTER RELEASE RETROGRADE INHIBITION HIPPOCAMPAL SYNAPSES |
ISSN号 | 0270-6474 |
通讯作者 | Poo, MM (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Helen Wills Neurosci Inst, Div Neurobiol, 229 Stanley Hall, Berkeley, CA 94720 USA,mpoo@berkeley.edu ; xhzhang@ion.ac.cn |
英文摘要 | Homeostatic regulation of synaptic strength in response to persistent changes of neuronal activity plays an important role in maintaining the overall level of circuit activity within a normal range. Absence of miniature EPSCs (mEPSCs) for a few hours is known to cause upregulation of excitatory synaptic strength, suggesting that mEPSCs contribute to the maintenance of excitatory synaptic functions. In the present study, we found that the absence of mEPSCs for 1-3 h also resulted in homeostatic suppression of presynaptic functions of inhibitory synapses in acute cortical slices from juvenile rats, as suggested by the reduced frequency (but not amplitude) of miniature IPSCs (mIPSCs) as well as the reduced amplitude of IPSCs. This homeostatic regulation depended on endocannabinoid (eCB) signaling, because blockade of either the activation of cannabinoid type-1 receptors (CB1Rs) or the synthesis of its endogenous ligand 2-arachidonoylglycerol (2-AG) abolished the suppression of inhibitory synapses caused by the absence of mEPSCs. Blockade of group I metabotropic glutamate receptors (mGluR-I) also abolished the suppression of inhibitory synapses, consistent with the mGluR-I requirement for eCB synthesis and release in cortical synapses. Furthermore, this homeostatic regulation also required eukaryotic elongation factor-2 (eEF2)-dependent protein synthesis, but not gene transcription. Activation of eEF2 alone was sufficient to suppress the mIPSC frequency, an effect abolished by inhibiting CB1Rs. Thus, mEPSCs contribute to the maintenance of inhibitory synaptic function and the absence of mEPSCs results in presynaptic suppression of inhibitory synapses via protein synthesis-dependent elevation of eCB signaling. |
学科主题 | Neurosciences & Neurology |
收录类别 | SCI |
资助信息 | National Basic Research Program of China[2006CB806600]; United States National Institutes of Health |
语种 | 英语 |
公开日期 | 2012-07-13 |
源URL | [http://ir.sibs.ac.cn/handle/331001/1634] ![]() |
专题 | 上海神经科学研究所_神经所(总) 上海神经科学研究所_神经可塑性研究组 |
推荐引用方式 GB/T 7714 | Poo, Mu-ming. Endocannabinoid-Dependent Homeostatic Regulation of Inhibitory Synapses by Miniature Excitatory Synaptic Activities[J]. JOURNAL OF NEUROSCIENCE,2009,29(42):13222-13231. |
APA | Poo, Mu-ming.(2009).Endocannabinoid-Dependent Homeostatic Regulation of Inhibitory Synapses by Miniature Excitatory Synaptic Activities.JOURNAL OF NEUROSCIENCE,29(42),13222-13231. |
MLA | Poo, Mu-ming."Endocannabinoid-Dependent Homeostatic Regulation of Inhibitory Synapses by Miniature Excitatory Synaptic Activities".JOURNAL OF NEUROSCIENCE 29.42(2009):13222-13231. |
入库方式: OAI收割
来源:上海神经科学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。