中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Cross-covariance regularized autoencoders for nonredundant sparse feature representation

文献类型:期刊论文

作者Chen, Jie1,2; Wu, ZhongCheng2,3; Zhang, Jun2; Li, Fang2; Li, WenJing2; Wu, ZiHeng2
刊名NEUROCOMPUTING
出版日期2018-11-17
卷号316页码:49-58
关键词Autoencoder Cross-covariance Deep learning Feature representation Receptive fields
ISSN号0925-2312
DOI10.1016/j.neucom.2018.07.050
通讯作者Chen, Jie(cj2016@mail.ustc.edu.cn)
英文摘要We propose a new feature representation algorithm using cross-covariance in the context of deep learning. Existing feature representation algorithms based on the sparse autoencoder and nonnegativity-constrained autoencoder tend to produce duplicative encoding and decoding receptive fields, which leads to feature redundancy and overfitting. We propose using the cross-covariance to regularize the feature weight vector to construct a new objective function to eliminate feature redundancy and reduce overfitting. The results from the MNIST handwritten digits dataset, the NORB normalized-uniform dataset and the Yale face dataset indicate that relative to other algorithms based on the conventional sparse autoencoder and nonnegativity-constrained autoencoder, our method can effectively eliminate feature redundancy, extract more distinctive features, and improve sparsity and reconstruction quality. Furthermore, this method improves the image classification performance and reduces the overfitting of conventional networks without adding more computational time. (C) 2018 Elsevier B.V. All rights reserved.
WOS关键词FEATURE-EXTRACTION ; NEURAL-NETWORKS ; NONNEGATIVITY CONSTRAINTS ; DENOISING AUTOENCODERS ; DEEP ; RECOGNITION ; ALGORITHM
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000443971900006
出版者ELSEVIER SCIENCE BV
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/38791]  
专题中国科学院合肥物质科学研究院
通讯作者Chen, Jie
作者单位1.Univ Sci & Technol China, Grad Sch Comp Appl Technol, Hefei, Anhui, Peoples R China
2.Chinese Acad Sci, Hefei Inst Phys Sci, Hefei, Anhui, Peoples R China
3.Univ Sci & Technol China, Hefei, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Chen, Jie,Wu, ZhongCheng,Zhang, Jun,et al. Cross-covariance regularized autoencoders for nonredundant sparse feature representation[J]. NEUROCOMPUTING,2018,316:49-58.
APA Chen, Jie,Wu, ZhongCheng,Zhang, Jun,Li, Fang,Li, WenJing,&Wu, ZiHeng.(2018).Cross-covariance regularized autoencoders for nonredundant sparse feature representation.NEUROCOMPUTING,316,49-58.
MLA Chen, Jie,et al."Cross-covariance regularized autoencoders for nonredundant sparse feature representation".NEUROCOMPUTING 316(2018):49-58.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。