Support vector correlation filter with long-term tracking
文献类型:期刊论文
作者 | Wang, Zhongpei1; Wang, Hao1![]() ![]() |
刊名 | SIGNAL IMAGE AND VIDEO PROCESSING
![]() |
出版日期 | 2018-11-01 |
卷号 | 12期号:8页码:1541-1549 |
关键词 | Support correlation filter Long-term tracking Re-detection Passive-aggressive algorithm Max response to average response rate |
ISSN号 | 1863-1703 |
DOI | 10.1007/s11760-018-1310-0 |
通讯作者 | Xie, Chengjun(cjxie@iim.ac.cn) |
英文摘要 | Boosted by the promising advancement of the correlation filter-based tracker, we propose an algorithm called the SLT (support vector correlation filter with long-term tracking) that is based on the new SCF (support vector correlation filter) framework to handle long-term tracking. To perform long-term tracking, we propose using a detector to refine the position that includes occlusion and deformation and is out-of-view. We used a new judgment criterion called the max response to the average response rate (MAR) to activate the re-detection procedure and then exploit the linear support vector machine (SVM) classifier to obtain a positive refinement. Moreover, we do not update the SVM classifier every frame to reduce the number of computations and obtain better samples to improve the accuracy of the classifier. We use the online passive-aggressive learning algorithm for online learning and use the same MAR criterion to active it. Extensive experimental results on the OTB50 benchmark dataset show its superior performance in terms of accuracy and robustness. |
WOS关键词 | OBJECT TRACKING ; ROBUST TRACKING |
资助项目 | National Natural Science Foundation of China[61175033] |
WOS研究方向 | Engineering ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000444312400014 |
出版者 | SPRINGER LONDON LTD |
资助机构 | National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/38837] ![]() |
专题 | 合肥物质科学研究院_中科院合肥智能机械研究所 |
通讯作者 | Xie, Chengjun |
作者单位 | 1.Hefei Univ Technol, Sch Comp & Informat, Hefei 230009, Anhui, Peoples R China 2.Chinese Acad Sci, Inst Intelligent Machines, Hefei 230031, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Zhongpei,Wang, Hao,Fang, Baofu,et al. Support vector correlation filter with long-term tracking[J]. SIGNAL IMAGE AND VIDEO PROCESSING,2018,12(8):1541-1549. |
APA | Wang, Zhongpei,Wang, Hao,Fang, Baofu,&Xie, Chengjun.(2018).Support vector correlation filter with long-term tracking.SIGNAL IMAGE AND VIDEO PROCESSING,12(8),1541-1549. |
MLA | Wang, Zhongpei,et al."Support vector correlation filter with long-term tracking".SIGNAL IMAGE AND VIDEO PROCESSING 12.8(2018):1541-1549. |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。