中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Modified eigenvector-based feature extraction for hyperspectral image classification using limited samples

文献类型:期刊论文

作者Wang, Wenning1,2,3; Mou, Xuanqin3; Liu, Xuebin1
刊名SIGNAL IMAGE AND VIDEO PROCESSING
关键词Eigenvector spectra Feature extraction Limited training sample classification Hyperspectral image
ISSN号1863-1703;1863-1711
DOI10.1007/s11760-019-01604-3
产权排序1
英文摘要

Classical supervised feature extraction methods, such as linear discriminant analysis (LDA) and nonparametric weighted feature extraction (NWFE), and search for projection directions through which the ratio of a between-class scatter matrix to a within-class scatter matrix can be maximized. The two feature extraction methods can obtain good classification results when training samples are sufficient; however, the effect is nonideal when samples are insufficient. In this study, the eigenvector spectra of LDA and NWFE are modified using spectral distribution information, which is locally unstable under the condition of a few samples. Experiments demonstrate that the proposed method outperforms several conventional feature extraction methods.

语种英语
WOS记录号WOS:000498145800001
出版者SPRINGER LONDON LTD
源URL[http://ir.opt.ac.cn/handle/181661/31958]  
专题西安光学精密机械研究所_光学影像学习与分析中心
通讯作者Wang, Wenning
作者单位1.Chinese Acad Sci, Key Lab Spectral Imaging Technol, Xian Inst Opt & Precis Mech, Xian, Shaanxi, Peoples R China
2.Shandong Agr Univ, Sch Informat Sci & Engn, Tai An, Shandong, Peoples R China
3.Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Wang, Wenning,Mou, Xuanqin,Liu, Xuebin. Modified eigenvector-based feature extraction for hyperspectral image classification using limited samples[J]. SIGNAL IMAGE AND VIDEO PROCESSING.
APA Wang, Wenning,Mou, Xuanqin,&Liu, Xuebin.
MLA Wang, Wenning,et al."Modified eigenvector-based feature extraction for hyperspectral image classification using limited samples".SIGNAL IMAGE AND VIDEO PROCESSING

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。