Modified eigenvector-based feature extraction for hyperspectral image classification using limited samples
文献类型:期刊论文
作者 | Wang, Wenning1,2,3; Mou, Xuanqin3; Liu, Xuebin1![]() |
刊名 | SIGNAL IMAGE AND VIDEO PROCESSING
![]() |
关键词 | Eigenvector spectra Feature extraction Limited training sample classification Hyperspectral image |
ISSN号 | 1863-1703;1863-1711 |
DOI | 10.1007/s11760-019-01604-3 |
产权排序 | 1 |
英文摘要 | Classical supervised feature extraction methods, such as linear discriminant analysis (LDA) and nonparametric weighted feature extraction (NWFE), and search for projection directions through which the ratio of a between-class scatter matrix to a within-class scatter matrix can be maximized. The two feature extraction methods can obtain good classification results when training samples are sufficient; however, the effect is nonideal when samples are insufficient. In this study, the eigenvector spectra of LDA and NWFE are modified using spectral distribution information, which is locally unstable under the condition of a few samples. Experiments demonstrate that the proposed method outperforms several conventional feature extraction methods. |
语种 | 英语 |
WOS记录号 | WOS:000498145800001 |
出版者 | SPRINGER LONDON LTD |
源URL | [http://ir.opt.ac.cn/handle/181661/31958] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
通讯作者 | Wang, Wenning |
作者单位 | 1.Chinese Acad Sci, Key Lab Spectral Imaging Technol, Xian Inst Opt & Precis Mech, Xian, Shaanxi, Peoples R China 2.Shandong Agr Univ, Sch Informat Sci & Engn, Tai An, Shandong, Peoples R China 3.Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Wenning,Mou, Xuanqin,Liu, Xuebin. Modified eigenvector-based feature extraction for hyperspectral image classification using limited samples[J]. SIGNAL IMAGE AND VIDEO PROCESSING. |
APA | Wang, Wenning,Mou, Xuanqin,&Liu, Xuebin. |
MLA | Wang, Wenning,et al."Modified eigenvector-based feature extraction for hyperspectral image classification using limited samples".SIGNAL IMAGE AND VIDEO PROCESSING |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。