中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Parse-matrix evolution for symbolic regression

文献类型:期刊论文

作者Luo ZT(罗长童); Zhang SL(张绍良)
刊名ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
出版日期2012-09-01
卷号25期号:6页码:1182-1193
通讯作者邮箱luo@imech.ac.cn;zhang@na.cse.nagoya-u.ac.jp
关键词Genetic programming Data analysis Symbolic regression Grammatical evolution Artificial intelligence Evolutionary computation Nonlinear-Systems Identification
ISSN号0952-1976
产权排序[Luo, Changtong] Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China;[Zhang, Shao-Liang] Nagoya Univ, Dept Computat Sci & Engn, Nagoya, Aichi 4648603, Japan
通讯作者Luo, CT ; Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China.
合作状况国际
中文摘要Data-driven model is highly desirable for industrial data analysis in case the experimental model structure is unknown or wrong, or the concerned system has changed. Symbolic regression is a useful method to construct the data-driven model (regression equation). Existing algorithms for symbolic regression such as genetic programming and grammatical evolution are difficult to use due to their special target programming language (i.e., LISP) or additional function parsing process. In this paper, a new evolutionary algorithm, parse-matrix evolution (PME), for symbolic regression is proposed. A chromosome in PME is a parse-matrix with integer entries. The mapping process from the chromosome to the regression equation is based on a mapping table. PME can easily be implemented in any programming language and free to control. Furthermore, it does not need any additional function parsing process. Numerical results show that PME can solve the symbolic regression problems effectively.
学科主题空气动力学
分类号一类
收录类别SCI ; EI
资助信息This work was partially supported by the National Natural Science Foundation of China (Grant No. 90916028).
原文出处http://dx.doi.org/10.1016/j.engappai.2012.05.015
语种英语
WOS记录号WOS:000308122700008
公开日期2013-01-18
源URL[http://dspace.imech.ac.cn/handle/311007/46613]  
专题力学研究所_高温气体动力学国家重点实验室
推荐引用方式
GB/T 7714
Luo ZT,Zhang SL. Parse-matrix evolution for symbolic regression[J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,2012,25(6):1182-1193.
APA 罗长童,&张绍良.(2012).Parse-matrix evolution for symbolic regression.ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,25(6),1182-1193.
MLA 罗长童,et al."Parse-matrix evolution for symbolic regression".ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 25.6(2012):1182-1193.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。