中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi-Antenna Channel Interpolation via Tucker Decomposed Extreme Learning Machine

文献类型:期刊论文

作者Zhang, Han2; Ai, Bo3; Xu, Wenjun1; Xu, Li4; Cui, Shuguang2
刊名IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
出版日期2019-07-01
卷号68期号:7页码:7160-7163
关键词Channel interpolation extreme learning machine tensor decomposition
ISSN号0018-9545
DOI10.1109/TVT.2019.2913865
英文摘要Channel interpolation is an essential technique for providing high-accuracy estimation of the channel state information for wireless systems design where the frequency-space structural correlations of multi-antenna channel are typically hidden in matrix or tensor forms. In this correspondence paper, a modified extreme learning machine (ELM) that can process tensorial data, or ELM model with tensorial inputs (TELM), is proposed to handle the channel interpolation task. The TELM inherits many good properties from ELMs. Based on the TELM, the Tucker decomposed extreme learning machine is proposed for further improving the performance. Furthermore, we establish a theoretical argument to measure the interpolation capability of the proposed learning machines. Experimental results verify that our proposed learning machines can achieve comparable mean squared error (MSE) performance against the traditional ELMs but with 15% shorter running time, and outperform the other methods for a 20% margin measured in MSE for channel interpolation.
资助项目National Science Foundation[CNS-1824553] ; National Science Foundation[DMS-1622433] ; National Science Foundation[AST-1547436] ; National Science Foundation[ECCS-1659025]
WOS研究方向Engineering ; Telecommunications ; Transportation
语种英语
WOS记录号WOS:000476775000077
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/4473]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cui, Shuguang
作者单位1.Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Universal Wireless Commun, Beijing 100876, Peoples R China
2.Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
3.Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Han,Ai, Bo,Xu, Wenjun,et al. Multi-Antenna Channel Interpolation via Tucker Decomposed Extreme Learning Machine[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2019,68(7):7160-7163.
APA Zhang, Han,Ai, Bo,Xu, Wenjun,Xu, Li,&Cui, Shuguang.(2019).Multi-Antenna Channel Interpolation via Tucker Decomposed Extreme Learning Machine.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,68(7),7160-7163.
MLA Zhang, Han,et al."Multi-Antenna Channel Interpolation via Tucker Decomposed Extreme Learning Machine".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 68.7(2019):7160-7163.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。