中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Fast resource scaling in elastic clusters with an agile method for demand estimation

文献类型:期刊论文

作者Hu, Cheng1; Deng, Yuhui1,2
刊名SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS
出版日期2018-09-01
卷号19页码:165-173
关键词Green computing Elastic cluster Demand estimation Resource scaling Resource management
ISSN号2210-5379
DOI10.1016/j.suscom.2018.03.001
英文摘要For energy saving, elastic clusters are introduced to cut back the energy wasted on powering unused servers. In an elastic cluster, the number of working servers, or called resources, is dynamically scaled based on resource demand of workload. However, many traditional scaling methods are unaware of an exact resource demand of workload. They gradually scale resources according to current service level with loose demand estimations or even with no estimation. Additionally, to provide the ability to make precise demand estimations, some other methods are proposed. They artificially represent system situation with a general model, but the model may not well reflect the reality because it is often difficult to describe the real situation of a system. For both of these methods, resources cannot be exactly scaled to the demand when demand changes, and there is a time delay before resources are scaled to the demand. This scaling delay will incur a performance degradation when workload increase, and will cause an energy waste when workload decrease. In this paper, we strive to efficiently estimate the actual demand of workload and achieve fast resource scaling in elastic clusters. Unlike traditional methods which make great efforts to understand the complex system situation, we only concentrate on the information of past actual resource demands. This information is actually the most straightforward and valid reflection to the real situation of a specific system, so it contains valuable knowledge for estimating the actual resource demand of new incoming workload. Therefore, we propose an agile method to directly estimate resource demand based on that knowledge, thus achieving a high accuracy. Specifically, our method directly learns that knowledge through a learning method-random forests, so it does not need artificial system analyses which are both complex and time-consuming. In addition, it is efficient to build random forests and make resource estimations in our method. Thus, our method can be efficiently and agilely performed in elastic clusters to reduce the scaling delay and achieve fast resource scaling. (C) 2018 Elsevier Inc. All rights reserved.
资助项目NSFC[61572232] ; Science and Technology Planning Project of Guangzhou[201604016100] ; Science and Technology Planning Project of Nansha[2016CX007] ; Open Research Fund of Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences[CARCH201705]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000446122000015
出版者ELSEVIER SCIENCE BV
源URL[http://119.78.100.204/handle/2XEOYT63/4804]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Deng, Yuhui
作者单位1.Jinan Univ, Dept Comp Sci, Guangzhou 510632, Guangdong, Peoples R China
2.Chinese Acad Sci, Inst Comp, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Hu, Cheng,Deng, Yuhui. Fast resource scaling in elastic clusters with an agile method for demand estimation[J]. SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS,2018,19:165-173.
APA Hu, Cheng,&Deng, Yuhui.(2018).Fast resource scaling in elastic clusters with an agile method for demand estimation.SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS,19,165-173.
MLA Hu, Cheng,et al."Fast resource scaling in elastic clusters with an agile method for demand estimation".SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS 19(2018):165-173.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。