中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A semi-supervised approximate spectral clustering algorithm based on HMRF model

文献类型:期刊论文

作者Ding, Shifei3,4; Jia, Hongjie1,4; Du, Mingjing3,4; Xue, Yu2
刊名INFORMATION SCIENCES
出版日期2018-03-01
卷号429页码:215-228
关键词Semi-supervised learning Spectral clustering HMRF model Approximate weighted kernel k-means Matrix trace
ISSN号0020-0255
DOI10.1016/j.ins.2017.11.016
英文摘要Before clustering, we usually have some background knowledge about the data structure. Pairwise constraints are commonly used background knowledge. For graph partition problems, pairwise constraints can be naturally added to the graph edge. This paper integrates pairwise constraints into the objective function of graph cuts and derive the semi-supervised approximate spectral clustering based on Hidden Markov Random Fields (HMRF). This algorithm utilize the mathematical connection between HMRF semi-supervised clustering and approximate weighted kernel k-means. The approximate weighted kernel k-means is used to calculate the optimal clustering results of HMRF spectral clustering. The effectiveness of the proposed algorithm is verified on several benchmark data sets. Experiments show that adding more pairwise constraints will help improve the clustering performance. Our method has advantages for the challenging clustering tasks of large-scale nonlinear data because of the high efficiency and less memory consumption. (C) 2017 Elsevier Inc. All rights reserved.
资助项目National Natural Science Foundations of China[61672522] ; National Natural Science Foundations of China[61379101] ; National Key Basic Research Program of China[2013CB329502] ; Priority Academic Program Development of Jiangsu Higer Education Institutions (PAPD) ; Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology(CICAEET)
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000423653300015
出版者ELSEVIER SCIENCE INC
源URL[http://119.78.100.204/handle/2XEOYT63/5618]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ding, Shifei
作者单位1.Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Peoples R China
2.Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100090, Peoples R China
4.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
推荐引用方式
GB/T 7714
Ding, Shifei,Jia, Hongjie,Du, Mingjing,et al. A semi-supervised approximate spectral clustering algorithm based on HMRF model[J]. INFORMATION SCIENCES,2018,429:215-228.
APA Ding, Shifei,Jia, Hongjie,Du, Mingjing,&Xue, Yu.(2018).A semi-supervised approximate spectral clustering algorithm based on HMRF model.INFORMATION SCIENCES,429,215-228.
MLA Ding, Shifei,et al."A semi-supervised approximate spectral clustering algorithm based on HMRF model".INFORMATION SCIENCES 429(2018):215-228.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。