中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
RECOME: A new density-based clustering algorithm using relative KNN kernel density

文献类型:期刊论文

作者Geng, Yangli-ao6; Li, Qingyong6; Zheng, Rong5; Zhuang, Fuzhen3,4; He, Ruisi2; Xiong, Naixue1
刊名INFORMATION SCIENCES
出版日期2018-04-01
卷号436页码:13-30
关键词Density-based clustering Density estimation K nearest neighbors Graph theory
ISSN号0020-0255
DOI10.1016/j.ins.2018.01.013
英文摘要Discovering clusters from a dataset with different shapes, densities, and scales is a known challenging problem in data clustering. In this paper, we propose the RElative COre MErge (RECOME) clustering algorithm. The core of RECOME is a novel density measure, i.e., Relative K nearest Neighbor Kernel Density (RNKD). RECOME identifies core objects with unit RNKD, and partitions non-core objects into atom clusters by successively following higher density neighbor relations toward core objects. Core objects and their corresponding atom clusters are then merged through alpha-reachable paths on a KNN graph. We discover that the number of clusters computed by RECOME is a step function of the a parameter with jump discontinuity on a small collection of values. A fast jump discontinuity discovery (FJDD) method is proposed based on graph theory. RECOME is evaluated on both synthetic datasets and real datasets. Experimental results indicate that RECOME is able to discover clusters with different shapes, densities, and scales. It outperforms six baseline methods on both synthetic datasets and real datasets. Moreover, FJDD is shown to be effective to extract the jump discontinuity set of parameter a for all tested datasets, which can ease the task of data exploration and parameter tuning. (C) 2018 Elsevier Inc. All rights reserved.
资助项目National Natural Science Foundation of China[61725101] ; National Natural Science Foundation of China[61773361] ; National Natural Science Foundation of China[61771037] ; Beijing Natural Science Foundation[J160004] ; Shanghai Research Program[17511102900] ; National Science and Engineering Council, Canada
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000427311400002
出版者ELSEVIER SCIENCE INC
源URL[http://119.78.100.204/handle/2XEOYT63/5707]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Qingyong
作者单位1.Northeastern State Univ, Dept Math & Comp Sci, Tahlequah, OK USA
2.Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Chinese Acad Sci, Key Lab Intelligen Informat Proc, ICT, Beijing 100190, Peoples R China
5.McMaster Univ, Dept Comp & Software, Hamilton, ON, Canada
6.Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Geng, Yangli-ao,Li, Qingyong,Zheng, Rong,et al. RECOME: A new density-based clustering algorithm using relative KNN kernel density[J]. INFORMATION SCIENCES,2018,436:13-30.
APA Geng, Yangli-ao,Li, Qingyong,Zheng, Rong,Zhuang, Fuzhen,He, Ruisi,&Xiong, Naixue.(2018).RECOME: A new density-based clustering algorithm using relative KNN kernel density.INFORMATION SCIENCES,436,13-30.
MLA Geng, Yangli-ao,et al."RECOME: A new density-based clustering algorithm using relative KNN kernel density".INFORMATION SCIENCES 436(2018):13-30.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。