Less annotation on active learning using confidence-weighted predictions
文献类型:期刊论文
作者 | Yang, Xiaodong1,2,3,4; Chen, Yiqiang1,2,3,4; Yu, Hanchao1,2,4; Zhang, Yingwei1,2,3,4 |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2018-01-31 |
卷号 | 275页码:1629-1636 |
关键词 | Extreme Learning Machine Online sequential learning Active learning Less annotation |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2017.10.004 |
英文摘要 | This paper proposes an efficient and effective active online sequential learning approach, named as Less Annotated Active Learning Extreme Learning Machine (LAAL-ELM). It leverages the predictions' confidence of the new arriving data to actively select both query-annotated samples and confidence-weighted predict-annotated ones to update the classifier, which contributes to less actively query annotation, and applies WOS-ELM, a discriminant model, to significantly reduce the computation complexity for doing online updating in one step. The proposed approach firstly gives a principle to evaluate confidence of the prediction in WOS-ELM; then determines what and how to update the model with new arriving data in the online phase: the uncertain instances are annotated by query their classes, almost-certain ones are weighted on its prediction's confidence and the certain ones are discarded directly for reducing over-fitting; at last, the weighted and query-annotated samples are used to update the classifier. The proposed approach is evaluated on five real-world benchmark classification issues. And the experimental results demonstrate that the proposed LAAL-ELM can effectively reduce the number of queried samples while maintaining high level of classification performance. (c) 2017 Elsevier B.V. All rights reserved. |
资助项目 | Natural Science Foundation of China[61502456] ; Natural Science Foundation of China[61572471] ; Science and Technology Planning Project of Guangdong Province, China[2015B010105001] ; Beijing Municipal Science & Technology Commission[Z161100000216140] ; Beijing Municipal Science & Technology Commission[Z171100000117013] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000418370200153 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://119.78.100.204/handle/2XEOYT63/6278] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Chen, Yiqiang |
作者单位 | 1.Beijing Key Lab Parkinsons Dis, Beijing 100053, Peoples R China 2.Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100190, Peoples R China 4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Xiaodong,Chen, Yiqiang,Yu, Hanchao,et al. Less annotation on active learning using confidence-weighted predictions[J]. NEUROCOMPUTING,2018,275:1629-1636. |
APA | Yang, Xiaodong,Chen, Yiqiang,Yu, Hanchao,&Zhang, Yingwei.(2018).Less annotation on active learning using confidence-weighted predictions.NEUROCOMPUTING,275,1629-1636. |
MLA | Yang, Xiaodong,et al."Less annotation on active learning using confidence-weighted predictions".NEUROCOMPUTING 275(2018):1629-1636. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。