中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A two-step approach to describing web topics via probable keywords and prototype images from background-removed similarities

文献类型:期刊论文

作者Pang, Junbiao1; Tao, Fei5; Li, Liang4; Huang, Qingming4,5; Yin, Baocai1,3; Tian, Qi2
刊名NEUROCOMPUTING
出版日期2018-01-31
卷号275页码:478-487
关键词Topic description Poisson deconvolution User-Generated Content Topic detection Background similarity Multi-modal description
ISSN号0925-2312
DOI10.1016/j.neucom.2017.08.057
英文摘要To quickly grasp what interesting topics are happening on web, it is challenge to discover and describe topics from User-Generated Content (UGC) data. Describing topics by probable keywords and prototype images is an efficient human-machine interaction to help person quickly grasp a topic. However, except for the challenges from web topic detection, mining the multi-media description is a challenge task that the conventional approaches can barely handle: (1) noises from non-informative short texts or images due to less-constrained UGC; and (2) even for these informative images, the gaps between visual concepts and social ones. This paper addresses above challenges from the perspective of background similarity remove, and proposes a two-step approach to mining the multi-media description from noisy data. First, we utilize a devcovolution model to strip the similarities among non-informative words/images during web topic detection. Second, the background-removed similarities are reconstructed to identify the probable keywords and prototype images during topic description. By removing background similarities, we can generate coherent and informative multi-media description for a topic. Experiments show that the proposed method produces a high quality description on two public datasets. (C) 2017 Elsevier B.V. All rights reserved.
资助项目Natural Science Foundation of China[61332016] ; Natural Science Foundation of China[61672069] ; Natural Science Foundation of China[61472387] ; Natural Science Foundation of China[61620106009] ; Natural Science Foundation of China[U1636214] ; Natural Science Foundation of China[61429201] ; Natural Science Foundation of China[61650202] ; Beijing Post-Doctoral Research Foundation ; Beijing Municipal Commission of Education[KM201610005034] ; Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR) ; ARO[W911NF-15-1-0290] ; NEC Laboratory of Blippar ; NEC Laboratory of America
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000418370200047
出版者ELSEVIER SCIENCE BV
源URL[http://119.78.100.204/handle/2XEOYT63/6282]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Liang
作者单位1.Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, 100 Pingleyuan Rd, Beijing 100124, Peoples R China
2.Univ Texas San Antonio, Dept Comp Sci, One UTSA Circle, San Antonio, TX 78249 USA
3.Dalian Univ Technol, 2 Linggong Rd, Dalian 116024, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Sch Comp & Control Engn, 19 Yuquan Rd, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Pang, Junbiao,Tao, Fei,Li, Liang,et al. A two-step approach to describing web topics via probable keywords and prototype images from background-removed similarities[J]. NEUROCOMPUTING,2018,275:478-487.
APA Pang, Junbiao,Tao, Fei,Li, Liang,Huang, Qingming,Yin, Baocai,&Tian, Qi.(2018).A two-step approach to describing web topics via probable keywords and prototype images from background-removed similarities.NEUROCOMPUTING,275,478-487.
MLA Pang, Junbiao,et al."A two-step approach to describing web topics via probable keywords and prototype images from background-removed similarities".NEUROCOMPUTING 275(2018):478-487.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。