中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Geometric Hypergraph Learning for Visual Tracking

文献类型:期刊论文

作者Du, Dawei1,7; Qi, Honggang1,7; Wen, Longyin5,6; Tian, Qi4; Huang, Qingming1,3,7; Lyu, Siwei2
刊名IEEE TRANSACTIONS ON CYBERNETICS
出版日期2017-12-01
卷号47期号:12页码:4182-4195
关键词Confidence-aware sampling correspondence hypotheses deformation geometric hypergraph learning mode-seeking occlusion visual tracking
ISSN号2168-2267
DOI10.1109/TCYB.2016.2626275
英文摘要Graph-based representation is widely used in visual tracking field by finding correct correspondences between target parts in different frames. However, most graph-based trackers consider pairwise geometric relations between local parts. They do not make full use of the target's intrinsic structure, thereby making the representation easily disturbed by errors in pairwise affinities when large deformation or occlusion occurs. In this paper, we propose a geometric hypergraph learning-based tracking method, which fully exploits high-order geometric relations among multiple correspondences of parts in different frames. Then visual tracking is formulated as the mode-seeking problem on the hypergraph in which vertices represent correspondence hypotheses and hyperedges describe high-order geometric relations among correspondences. Besides, a confidence-aware sampling method is developed to select representative vertices and hyperedges to construct the geometric hypergraph for more robustness and scalability. The experiments are carried out on three challenging datasets (VOT2014, OTB100, and Deform-SOT) to demonstrate that our method performs favorably against other existing trackers.
资助项目National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[61472388] ; National Natural Science Foundation of China[61429201] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] ; ARO[W911NF-15-1-0290] ; Faculty Research Gift Awards by NEC Laboratories of America ; U.S. National Science Foundation Research Grant through Division of Computing and Communication Foundations[1319800] ; Blippar
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000415727200015
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/6495]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Qi, Honggang; Huang, Qingming
作者单位1.Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China
2.SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
4.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
5.GE Global Res, Niskayuna, NY 12309 USA
6.SUNY Albany, Albany, NY 12222 USA
7.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Du, Dawei,Qi, Honggang,Wen, Longyin,et al. Geometric Hypergraph Learning for Visual Tracking[J]. IEEE TRANSACTIONS ON CYBERNETICS,2017,47(12):4182-4195.
APA Du, Dawei,Qi, Honggang,Wen, Longyin,Tian, Qi,Huang, Qingming,&Lyu, Siwei.(2017).Geometric Hypergraph Learning for Visual Tracking.IEEE TRANSACTIONS ON CYBERNETICS,47(12),4182-4195.
MLA Du, Dawei,et al."Geometric Hypergraph Learning for Visual Tracking".IEEE TRANSACTIONS ON CYBERNETICS 47.12(2017):4182-4195.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。