Region similarity arrangement for large-scale image retrieval
文献类型:期刊论文
作者 | Zhang, Dongming2,3,4; Tang, Jingya2,3; Jin, Guoqing2,3; Zhang, Yongdong2,3; Tian, Qi1 |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2018-01-10 |
卷号 | 272页码:461-470 |
关键词 | Content based image retrieval Geometric verification Region property space Spatial weighting |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2017.07.025 |
英文摘要 | We propose a promising method of geometric verification to improve the precision of Bag-of-Words (BoW) model in image retrieval. Most previous methods focus on the positions of interest points or the absolute differences of regions' scales and angles. In contrast, our method, named Region Similarity Arrangement (RSA), exploits the spatial arrangement of interest regions. For each image, RSA constructs a Region Property Space, regarding each region's (scale, angle) pair as a point in a polar coordinate system, and encodes the arrangement of these points into the BoW vector. Furthermore, based on the particular distribution of points in Region Property Space, we design a Spatial Weighting to reduce the burstiness phenomenon during query. From experimental results on Holidays, Oxford5K and Paris, RSA could get comparable results with state-of-the-art methods. In addition, RSA increases no extra memory and negligible computational consumption compared with the baseline BoW approach. (C) 2017 Published by Elsevier B.V. |
资助项目 | National Key Research and Development Program of China[2016YFB0801203] ; National Key Research and Development Program of China[2016YFB0801200] ; National Natural Science Foundation of China[61672495] ; National Natural Science Foundation of China[61273247] ; National Natural Science Foundation of China[61303159] ; National Natural Science Foundation of China[61271428] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000413821400048 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://119.78.100.204/handle/2XEOYT63/6549] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Tang, Jingya |
作者单位 | 1.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX USA 2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China 3.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Beijing, Peoples R China 4.Coordinat Ctr China, Emergency Response Tech Team, Natl Comp Network, Nanjing, Jiangsu, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Dongming,Tang, Jingya,Jin, Guoqing,et al. Region similarity arrangement for large-scale image retrieval[J]. NEUROCOMPUTING,2018,272:461-470. |
APA | Zhang, Dongming,Tang, Jingya,Jin, Guoqing,Zhang, Yongdong,&Tian, Qi.(2018).Region similarity arrangement for large-scale image retrieval.NEUROCOMPUTING,272,461-470. |
MLA | Zhang, Dongming,et al."Region similarity arrangement for large-scale image retrieval".NEUROCOMPUTING 272(2018):461-470. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。