中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multimodal Similarity Gaussian Process Latent Variable Model

文献类型:期刊论文

作者Song, Guoli1,2,3; Wang, Shuhui2; Huang, Qingming1,2,3; Tian, Qi4
刊名IEEE TRANSACTIONS ON IMAGE PROCESSING
出版日期2017-09-01
卷号26期号:9页码:4168-4181
关键词Multimodal learning Gaussian processes similarity preservation
ISSN号1057-7149
DOI10.1109/TIP.2017.2713045
英文摘要Data from real applications involve multiple modalities representing content with the same semantics from complementary aspects. However, relations among heterogeneous modalities are simply treated as observation-to-fit by existing work, and the parameterized modality specific mapping functions lack flexibility in directly adapting to the content divergence and semantic complicacy in multimodal data. In this paper, we build our work based on the Gaussian process latent variable model (GPLVM) to learn the non-parametric mapping functions and transform heterogeneous modalities into a shared latent space. We propose multimodal Similarity Gaussian Process latent variable model (m-SimGP), which learns the mapping functions between the intra-modal similarities and latent representation. We further propose multimodal distance-preserved similarity GPLVM (m-DSimGP) to preserve the intra-modal global similarity structure, and multimodal regularized similarity GPLVM (m-RSimGP) by encouraging similar/dissimilar points to be similar/dissimilar in the latent space. We propose m-DRSimGP, which combines the distance preservation in m-DSimGP and semantic preservation in m-RSimGP to learn the latent representation. The overall objective functions of the four models are solved by simple and scalable gradient decent techniques. They can be applied to various tasks to discover the nonlinear correlations and to obtain the comparable low-dimensional representation for heterogeneous modalities. On five widely used real-world data sets, our approaches outperform existing models on cross-modal content retrieval and multimodal classification.
资助项目National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61650202] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61572488] ; National Natural Science Foundation of China[61429201] ; National Basic Research Program of China (973 Program)[2015CB351802] ; Key Research Program of Frontier Sciences of CAS[QYZDJ-SSW-SYS013] ; ARO[W911NF-15-1-0290] ; Faculty Research Gift Awards by NEC Laboratory of America ; Faculty Research Gift Awards by NEC Laboratory of Blippar
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000404288000006
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/7107]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Shuhui
作者单位1.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China
4.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
推荐引用方式
GB/T 7714
Song, Guoli,Wang, Shuhui,Huang, Qingming,et al. Multimodal Similarity Gaussian Process Latent Variable Model[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2017,26(9):4168-4181.
APA Song, Guoli,Wang, Shuhui,Huang, Qingming,&Tian, Qi.(2017).Multimodal Similarity Gaussian Process Latent Variable Model.IEEE TRANSACTIONS ON IMAGE PROCESSING,26(9),4168-4181.
MLA Song, Guoli,et al."Multimodal Similarity Gaussian Process Latent Variable Model".IEEE TRANSACTIONS ON IMAGE PROCESSING 26.9(2017):4168-4181.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。