中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
DSP: Discriminative Spatial Part modeling for Fine-Grained Visual Categorization

文献类型:期刊论文

作者Yao, Hantao1,2; Zhang, Dongming3; Li, Jintao1; Zhou, Jianshe4; Zhang, Shiliang5; Zhang, Yongdong1,2
刊名IMAGE AND VISION COMPUTING
出版日期2017-07-01
卷号63页码:24-37
关键词Orientational Spatial Part model Discriminative Spatial Part modeling Fine-Grained Visual Categorization CNN
ISSN号0262-8856
DOI10.1016/j.imavis.2017.05.003
英文摘要Different from the basic-level classification, the Fine-Grained Visual Categorization (FGVC) aims to classify objects belonging to the same species. Therefore, it is more challenging than the basic-level classification. Recently, significant advances have been achieved in FGVC. However, most of the existing methods require bounding boxes or part annotations for training and testing, resulting in limited usability and flexibility. To conquer these limitations, we aim to automatically detect the bounding boxes and parts for FGVC. The bounding boxes are acquired by transferring bounding boxes from training images to testing images. Based on the generated bounding boxes, we employ a multiple-layer Orientational Spatial Part (OSP) model to learn local parts for the object. To achieve more discriminative part modeling, the Discriminative Spatial Part (DSP) model is proposed to select the discriminative parts from OSP. Finally, we employ Convolutional Neural Network (CNN) as the feature extractor and train a linear SVM as the classifier. Extensive experiments on public benchmark datasets manifest the impressive performance of our method, i.e., classification accuracy achieves 79.8% on CUB-200-2011 and 85.7% on Aircraft, which are higher than many existing methods using manual annotations. (C) 2017 Elsevier B.V. All rights reserved.
资助项目National Nature Science Foundation of China (NSFC)[61525206] ; National Nature Science Foundation of China (NSFC)[61672495] ; National Nature Science Foundation of China (NSFC)[61572050] ; National Nature Science Foundation of China (NSFC)[91538111] ; National Nature Science Foundation of China (NSFC)[61620106009] ; National Key Research and Development Plan of China[2016YFB0801203] ; National Key Research and Development Plan of China[2016YFB0801200]
WOS研究方向Computer Science ; Engineering ; Optics
语种英语
WOS记录号WOS:000404312400003
出版者ELSEVIER SCIENCE BV
源URL[http://119.78.100.204/handle/2XEOYT63/7115]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Yongdong
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Coordinat Ctr China, Natl Comp Network Emergency Response Tech Team, Beijing 100029, Peoples R China
4.Capital Normal Univ, Beijing Adv Innovat Ctr Imaging Technol, Beijing 100048, Peoples R China
5.Peking Univ, Elect Engn & Comp Sci, Beijing 100871, Peoples R China
推荐引用方式
GB/T 7714
Yao, Hantao,Zhang, Dongming,Li, Jintao,et al. DSP: Discriminative Spatial Part modeling for Fine-Grained Visual Categorization[J]. IMAGE AND VISION COMPUTING,2017,63:24-37.
APA Yao, Hantao,Zhang, Dongming,Li, Jintao,Zhou, Jianshe,Zhang, Shiliang,&Zhang, Yongdong.(2017).DSP: Discriminative Spatial Part modeling for Fine-Grained Visual Categorization.IMAGE AND VISION COMPUTING,63,24-37.
MLA Yao, Hantao,et al."DSP: Discriminative Spatial Part modeling for Fine-Grained Visual Categorization".IMAGE AND VISION COMPUTING 63(2017):24-37.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。