中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi-feature fusion deep networks

文献类型:期刊论文

作者Ma, Gang1,2; Yang, Xi1; Zhang, Bo1,3; Shi, Zhongzhi1
刊名NEUROCOMPUTING
出版日期2016-12-19
卷号218页码:164-171
关键词Deep networks Denoising autoencoder Interpretability Discriminativeness
ISSN号0925-2312
DOI10.1016/j.neucom.2016.08.059
英文摘要In this paper, we propose a novel deep networks, multi-feature fusion deep networks (MFFDN), based on denoising autoencoder. MFFDN significantly reduces the classification error while giving the interpretability of the hidden-layer feature representation in learning process. Comparing with the traditional denoising autoencoder, MFFDN mainly shows the following advantages: (1) minimally retaining a certain amount of "information" constrained to a given form about its input; (2) explicitly interpreting the meaning of the feature representation in one hidden layer; (3) enhancing discriminativeness of the whole networks. At last, the experiments analysis on MNIST, CIFAR-10 and SVHN prove the state-of-the-art performance improvement of MFFDN with the advantages minimally retaining "information" constraint and the interpreted hidden feature representation. (C) 2016 Elsevier B.V. All rights reserved.
资助项目National Basic Research Program of China (973)[2013CB329502] ; National Natural Science Foundation of China[61035003] ; National Natural Science Foundation of China[61202212] ; National Science and Technology Support Program[2012BA107B02] ; Natural Science Foundation of Jiangsu Province[BK20160276]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000388053700018
出版者ELSEVIER SCIENCE BV
源URL[http://119.78.100.204/handle/2XEOYT63/7922]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ma, Gang
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
推荐引用方式
GB/T 7714
Ma, Gang,Yang, Xi,Zhang, Bo,et al. Multi-feature fusion deep networks[J]. NEUROCOMPUTING,2016,218:164-171.
APA Ma, Gang,Yang, Xi,Zhang, Bo,&Shi, Zhongzhi.(2016).Multi-feature fusion deep networks.NEUROCOMPUTING,218,164-171.
MLA Ma, Gang,et al."Multi-feature fusion deep networks".NEUROCOMPUTING 218(2016):164-171.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。