中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep and Structured Robust Information Theoretic Learning for Image Analysis

文献类型:期刊论文

作者Deng, Yue1,2; Bao, Feng1; Deng, Xuesong3; Wang, Ruiping3; Kong, Youyong4; Dai, Qionghai1
刊名IEEE TRANSACTIONS ON IMAGE PROCESSING
出版日期2016-09-01
卷号25期号:9页码:4209-4221
关键词Data embedding mutual information deep learning structured-sparse learning image classification brain MRI segmentation
ISSN号1057-7149
DOI10.1109/TIP.2016.2588330
英文摘要This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e., missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we, respectively, discuss three types of the RIT implementations with linear subspace embedding, deep transformation, and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark data sets. The structured sparse RIT is further applied to a medical image analysis task for brain magnetic resonance image segmentation that allows group-level feature selections on the brain tissues.
资助项目National Natural Science Foundation of China[61327902] ; National Natural Science Foundation of China[61120106003] ; National Natural Science Foundation of China[61379083] ; National Science Foundation of Jiangsu Province, China[BK20150650]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000380355600005
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/8249]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Deng, Yue
作者单位1.Tsinghua Univ, Automat Dept, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
2.Univ Calif San Francisco, San Francisco Med Ctr, San Francisco, CA 94158 USA
3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
4.Southeast Univ, Sch Comp Sci & Engn, Nanjing 210000, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Deng, Yue,Bao, Feng,Deng, Xuesong,et al. Deep and Structured Robust Information Theoretic Learning for Image Analysis[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2016,25(9):4209-4221.
APA Deng, Yue,Bao, Feng,Deng, Xuesong,Wang, Ruiping,Kong, Youyong,&Dai, Qionghai.(2016).Deep and Structured Robust Information Theoretic Learning for Image Analysis.IEEE TRANSACTIONS ON IMAGE PROCESSING,25(9),4209-4221.
MLA Deng, Yue,et al."Deep and Structured Robust Information Theoretic Learning for Image Analysis".IEEE TRANSACTIONS ON IMAGE PROCESSING 25.9(2016):4209-4221.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。