中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi layer ELM-RBF for multi-label learning

文献类型:期刊论文

作者Zhang, Nan1,2; Ding, Shifei1,2; Zhang, Jian1,2
刊名APPLIED SOFT COMPUTING
出版日期2016-06-01
卷号43页码:535-545
关键词Multi-label learning Extreme learning machine Radial basis function k-Means clustering Extreme learning machine based auto encoder (ELM-AE)
ISSN号1568-4946
DOI10.1016/j.asoc.2016.02.039
英文摘要Many neural network methods such as ML-RBF and BP-MLL have been used for multi-label classification. Recently, extreme learning machine (ELM) is used as the basic elements to handle multi-label classification problem because of its fast training time. Extreme learning machine based auto encoder (ELM-AE) is a novel method of neural network which can reproduce the input signal as well as auto encoder, but it can not solve the over-fitting problem in neural networks elegantly. Introducing weight uncertainty into ELM-AE, we can treat the input weights as random variables following Gaussian distribution and propose weight uncertainty ELM-AE (WuELM-AE). In this paper, a neural network named multi layer ELM-RBF for multi-label learning (ML-ELM-RBF) is proposed. It is derived from radial basis function for multi-label learning (ML-RBF) and WuELM-AE. ML-ELM-RBF firstly stacks WuELM-AE to create a deep network, and then it conducts clustering analysis on samples features of each possible class to compose the last hidden layer. ML-ELM-RBF has achieved satisfactory results on single-label and multi-label data sets. Experimental results show that WuELM-AE and ML-ELM-RBF are effective learning algorithms. (C) 2016 Elsevier B.V. All rights reserved.
资助项目National Natural Science Foundation of China[61379101] ; National Key Basic Research Program of China[2013CB329502]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000375042300043
出版者ELSEVIER SCIENCE BV
源URL[http://119.78.100.204/handle/2XEOYT63/8529]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ding, Shifei
作者单位1.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Nan,Ding, Shifei,Zhang, Jian. Multi layer ELM-RBF for multi-label learning[J]. APPLIED SOFT COMPUTING,2016,43:535-545.
APA Zhang, Nan,Ding, Shifei,&Zhang, Jian.(2016).Multi layer ELM-RBF for multi-label learning.APPLIED SOFT COMPUTING,43,535-545.
MLA Zhang, Nan,et al."Multi layer ELM-RBF for multi-label learning".APPLIED SOFT COMPUTING 43(2016):535-545.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。