Modeling Multi-factor Sequential User Behavior Data over Social Networks
文献类型:期刊论文
作者 | Wang Peng1,2,3; Zhang Peng2; Zhou Chuang2; Guo Li2; Fang Binxing2; Yang Tao4 |
刊名 | CHINESE JOURNAL OF ELECTRONICS
![]() |
出版日期 | 2016-03-01 |
卷号 | 25期号:2页码:364-371 |
关键词 | Malicious user detection User behavior Social networks Bayesian model Social influence |
ISSN号 | 1022-4653 |
DOI | 10.1049/cje.2016.03.025 |
英文摘要 | Modeling dynamic user behavior over online social networks not only helps us understand user behavior patterns on social networks, but also improves the performance of behavior analysis tasks. Time-varying user behavior is commonly influenced by multiple factors: user habit, social influence and external events. Existing works either consider only a part of these factors, or fail to model the dynamics behind user behavior. Thus, they cannot precisely model the user behavior. We present a generative Bayesian model HES to model dynamic user behavior data. We take the influential factors and user's selection process as separate latent variables, based on which we can recover the evolving patterns underneath user behavior data sequences. Empirical results on large-scale social networks show that the proposed approach outperforms existing user behavior prediction models by at least 8% w.r.t. prediction accuracy. Our work also unveils some interesting insights underneath social behavior data. |
资助项目 | NSFC[61370025] ; NSFC[61502479] ; 863 projects[2011AA01A103] ; National Basic Program of China (973 project)[2013CB329605] ; Strategic Leading Science and Technology Projects of Chinese Academy of Sciences[XDA06030200] |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:000372046100025 |
出版者 | TECHNOLOGY EXCHANGE LIMITED HONG KONG |
源URL | [http://119.78.100.204/handle/2XEOYT63/8651] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wang Peng |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Inst Informat Engn, Beijing 100089, Peoples R China 3.Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China 4.China Informat Technol Secur Evaluat Ctr, Beijing 100085, Peoples R China |
推荐引用方式 GB/T 7714 | Wang Peng,Zhang Peng,Zhou Chuang,et al. Modeling Multi-factor Sequential User Behavior Data over Social Networks[J]. CHINESE JOURNAL OF ELECTRONICS,2016,25(2):364-371. |
APA | Wang Peng,Zhang Peng,Zhou Chuang,Guo Li,Fang Binxing,&Yang Tao.(2016).Modeling Multi-factor Sequential User Behavior Data over Social Networks.CHINESE JOURNAL OF ELECTRONICS,25(2),364-371. |
MLA | Wang Peng,et al."Modeling Multi-factor Sequential User Behavior Data over Social Networks".CHINESE JOURNAL OF ELECTRONICS 25.2(2016):364-371. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。