Power-efficient assignment of virtual machines to physical machines
文献类型:期刊论文
作者 | Arjona Aroca, Jordi2; Fernandez Anta, Antonio1; Mosteiro, Miguel A.3; Thraves, Christopher4,5; Wang, Lin6,7 |
刊名 | FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
![]() |
出版日期 | 2016 |
卷号 | 54页码:82-94 |
关键词 | Cloud computing Generalized assignment Scheduling Load balancing |
ISSN号 | 0167-739X |
DOI | 10.1016/j.future.2015.01.006 |
英文摘要 | Motivated by current trends in cloud computing, we study a version of the generalized assignment problem where a set of virtual processors has to be implemented by a set of identical processors. For literature consistency, we say that a set of virtual machines (VMs) is assigned to a set of physical machines (PMs). The optimization criterion is to minimize the power consumed by all the PMs. We term the problem Virtual Machine Assignment (VMA). Crucial differences with previous work include a variable number of PMs, that each VM must be assigned to exactly one PM (i.e., VMs cannot be implemented fractionally), and a minimum power consumption for each active PM. Such infrastructure may be strictly constrained in the number of PMs or in the PMs' capacity, depending on how costly (in terms of power consumption) it is to add a new PM to the system or to heavily load some of the existing PMs. Low usage or ample budget yields models where PM capacity and/or the number of PMs may be assumed unbounded for all practical purposes. We study four VMA problems depending on whether the capacity or the number of PMs is bounded or not. Specifically, we study hardness and online competitiveness for a variety of cases. To the best of our knowledge, this is the first comprehensive study of the VMA problem for this cost function. (c) 2015 Elsevier B.V. All rights reserved. |
资助项目 | Comunidad de Madrid[S2009TIC-1692] ; Comunidad de Madrid[S2013/ICE-2894] ; MINECO[TEC2011-29688-C02-01] ; National Natural Science Foundation of China[61020106002] ; National Science Foundation[CCF-1114930] ; Kean University UFRI grant[UFRI1415] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000368383200007 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://119.78.100.204/handle/2XEOYT63/8918] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Arjona Aroca, Jordi |
作者单位 | 1.Inst IMDEA Networks, Madrid, Spain 2.Univ Carlos III Madrid, Madrid, Spain 3.Kean Univ, Dept Comp Sci, Union, NJ USA 4.CNRS LAAS, Toulouse, France 5.Univ Toulouse LAAS, Toulouse, France 6.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China 7.Univ Chinese Acad Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Arjona Aroca, Jordi,Fernandez Anta, Antonio,Mosteiro, Miguel A.,et al. Power-efficient assignment of virtual machines to physical machines[J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,2016,54:82-94. |
APA | Arjona Aroca, Jordi,Fernandez Anta, Antonio,Mosteiro, Miguel A.,Thraves, Christopher,&Wang, Lin.(2016).Power-efficient assignment of virtual machines to physical machines.FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,54,82-94. |
MLA | Arjona Aroca, Jordi,et al."Power-efficient assignment of virtual machines to physical machines".FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 54(2016):82-94. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。