A generalized S-K algorithm for learning v-SVM classifiers
文献类型:期刊论文
作者 | Tao, Q; Wu, GW; Wang, J |
刊名 | PATTERN RECOGNITION LETTERS
![]() |
出版日期 | 2004-07-16 |
卷号 | 25期号:10页码:1165-1171 |
关键词 | statistical machine learning support vector machines classification v-SVM S-K algorithms soft convex hulls |
ISSN号 | 0167-8655 |
DOI | 10.1016/j.patrec.2004.03.011 |
英文摘要 | The S-K algorithm (Schlesinger-Kozinec algorithm) and the modified kernel technique due to Friess et al. have been recently combined to solve SVM with L-2 cost function. In this paper, we generalize S-K algorithm to be applied for soft convex hulls. As a result, our algorithm can solve v-SVM based on L-1 cost function. Simple in nature, our soft algorithm is essentially a algorithm for finding the epsilon-optimal nearest points between two soft convex hulls. As only the vertexes of the hard convex hulls are used, the obvious superiority of our algorithm is that it has almost the same computational cost as that of the hard S-K algorithm. The theoretical analysis and some experiments demonstrate the performance of our algorithm. (C) 2004 Elsevier B.V. All rights reserved. |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000222392000008 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://119.78.100.204/handle/2XEOYT63/9900] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Tao, Q |
作者单位 | 1.Chinese Acad Sci, Comp Technol Inst, Bioinformat Lab, Beijing 100080, Peoples R China 2.New Star Res Inst Appl Tech, Hefei 230031, Peoples R China 3.Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Tao, Q,Wu, GW,Wang, J. A generalized S-K algorithm for learning v-SVM classifiers[J]. PATTERN RECOGNITION LETTERS,2004,25(10):1165-1171. |
APA | Tao, Q,Wu, GW,&Wang, J.(2004).A generalized S-K algorithm for learning v-SVM classifiers.PATTERN RECOGNITION LETTERS,25(10),1165-1171. |
MLA | Tao, Q,et al."A generalized S-K algorithm for learning v-SVM classifiers".PATTERN RECOGNITION LETTERS 25.10(2004):1165-1171. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。