中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Effort analysis in signer-independent sign gestures

文献类型:期刊论文

作者Jiang, F.1; Gao, W.1; Yao, H.1; Zhao, D.1; Chen, X.2
刊名JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE
出版日期2008-06-01
卷号20期号:2页码:133-152
关键词sign gesture sign recognition effort analysis signer-independent data variance
ISSN号0952-813X
DOI10.1080/09528130701538208
英文摘要A dilemma, caused by data variation, exists in research into signer-independent sign language recognition. An effective way to solve this dilemma, and thereby help push the research forward, is to understand sign language from the perspectives of human kinesics and linguistics. This paper, based on the principles of movement observation science, specifically Laban Movement Analysis (LMA), presents a summary of the factors causing sign language data variation, proposes the definition of, and a method for describing, sign language effort elements, and then provides a strategy for standardizing signer-independent sign language data. The standardized data are to be used for training and recognition. The method presented in this paper has been assessed under different experimental conditions, and the results show that the recognition accuracy is greatly increased.
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000256972000004
出版者TAYLOR & FRANCIS LTD
源URL[http://119.78.100.204/handle/2XEOYT63/11274]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jiang, F.
作者单位1.Harbin Inst Technol, Sch Comp Sci, Harbin 150006, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Jiang, F.,Gao, W.,Yao, H.,et al. Effort analysis in signer-independent sign gestures[J]. JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE,2008,20(2):133-152.
APA Jiang, F.,Gao, W.,Yao, H.,Zhao, D.,&Chen, X..(2008).Effort analysis in signer-independent sign gestures.JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE,20(2),133-152.
MLA Jiang, F.,et al."Effort analysis in signer-independent sign gestures".JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 20.2(2008):133-152.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。