Probabilistic Multi-Task Learning for Visual Saliency Estimation in Video
文献类型:期刊论文
作者 | Li, Jia1,3; Tian, Yonghong2; Huang, Tiejun2; Gao, Wen2 |
刊名 | INTERNATIONAL JOURNAL OF COMPUTER VISION
![]() |
出版日期 | 2010-11-01 |
卷号 | 90期号:2页码:150-165 |
关键词 | Visual saliency Probabilistic framework Visual search tasks Multi-task learning |
ISSN号 | 0920-5691 |
DOI | 10.1007/s11263-010-0354-6 |
英文摘要 | In this paper, we present a probabilistic multi-task learning approach for visual saliency estimation in video. In our approach, the problem of visual saliency estimation is modeled by simultaneously considering the stimulus-driven and task-related factors in a probabilistic framework. In this framework, a stimulus-driven component simulates the low-level processes in human vision system using multi-scale wavelet decomposition and unbiased feature competition; while a task-related component simulates the high-level processes to bias the competition of the input features. Different from existing approaches, we propose a multi-task learning algorithm to learn the task-related "stimulus-saliency" mapping functions for each scene. The algorithm also learns various fusion strategies, which are used to integrate the stimulus-driven and task-related components to obtain the visual saliency. Extensive experiments were carried out on two public eye-fixation datasets and one regional saliency dataset. Experimental results show that our approach outperforms eight state-of-the-art approaches remarkably. |
资助项目 | Chinese National Natural Science Foundation[60973055] ; Chinese National Natural Science Foundation[90820003] ; National Basic Research Program of China[2009CB320906] ; Fok Ying Dong Education Foundation[122008] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000281087900002 |
出版者 | SPRINGER |
源URL | [http://119.78.100.204/handle/2XEOYT63/12506] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Tian, Yonghong |
作者单位 | 1.Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China 2.Peking Univ, Natl Engn Lab Video Technol, Beijing 100871, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Jia,Tian, Yonghong,Huang, Tiejun,et al. Probabilistic Multi-Task Learning for Visual Saliency Estimation in Video[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2010,90(2):150-165. |
APA | Li, Jia,Tian, Yonghong,Huang, Tiejun,&Gao, Wen.(2010).Probabilistic Multi-Task Learning for Visual Saliency Estimation in Video.INTERNATIONAL JOURNAL OF COMPUTER VISION,90(2),150-165. |
MLA | Li, Jia,et al."Probabilistic Multi-Task Learning for Visual Saliency Estimation in Video".INTERNATIONAL JOURNAL OF COMPUTER VISION 90.2(2010):150-165. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。